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operator function belonging to the space of linear bounded operators, and with its help a unique 

solvability of direct and inverse problems of Cauchy type is established. Let's note that the degener-

ate inverse problem is considered for the first time. 

KEY WORDS: degenerate fractional equation, non-densely defined operator, direct and inverse 

Cauchy type problem, resolving operator, unambiguous resolvability. 

INTRODUCTION. 

In the Banach space E, we consider a linear differential equation of fractional order with a degener-

ate operator at a fractional derivative. By the operator coefficients of the equation, some operator-

valued function )(tU  is developed that belongs to the space )(EL  of bounded linear operators act-

ing from E  into E , and it helps to establish a unique solvability of the direct and the inverse prob-

lems of Cauchy type. 



3 

 

Let A and B be the linear operators with the domains of definition )(AD  and )(BD  respectively, at 

that )()( ADBD  . Let's introduce A-resolvent set ( ) )(:)(
1

ELBACBA −=
−  for con-

sideration. On this set the operator function ( ) 1−
− BA  is determined – the generalized resolvent of 

the operator B . 

Term 1. We shall assume that the half-plane 0Re   of the complex plane C is contained in the 

A-resolvent set, that is  )(0Re: BC A  . Moreover, suppose that at  i+=  the gener-

alized resolvent ( ) 1−
− BA  of the operator B  at →  is defined in a region wider than the half-

plane of the area  , bounded to the left by the curve   with the equation 22
0 )1( r +−= , 

0),,( 0 −   and in this domain with some constant 0M  the following estimation is 

performed: 

,)( 1

r

M
BAA


 − −  .1

3

2
,  r    (1) 

Term 1 implies, in particular, the existence of a bounded inverse operator .1−B  The product of the 

operator A on a generalized resolvent does not have a maximal order of the resolvent decrease 

equal to 1, but the estimate (1) allows us to develop the operator function )(tU  indicated above. 

Let's note also that the operator B is not necessarily defined densely, and this fact implies a special 

form of the initial condition for the equation considered below. 

Let’s consider a Cauchy-type problem at 10   

),()( tButuAD =
 ,0t      (2) 

,)(lim 0
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0
uABtuAI
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→
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     (3) 
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where  ,0ker A  which means the degeneration of the equation (2), )()( 1 tuI
dt

d
tuD  −
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left-hand fractional Riemann-Liouville derivative, and 
−−

=−
t

d
t

u
tuI
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)(
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  is the left-

sided fractional Riemann-Liouville integral, )(  is the gamma function. 

Definition 1. The solution of the problem (2), (3) is the function )),(),,0(()( BDCtu   for which 

)),(),,0(()( 11 ADCtuI −  ),(tuAD
),),,0(()( ECtBu   and satisfying the equation (2) and the 

initial condition (3). 

Among the papers devoted to the study of fractional-order equations with the degeneracy under var-

ious assumptions, let's mention the papers (Balachandran, Kiruthika, 2012; Li, Liang, Xu, 2012; 

Fedorov, Debbouche, 2013; Fedorov, et al. 2015). For example, in (Balachandran, Kiruthika, 2012), 

(Li, Liang, Xu, 2012), the operator A is imposed with the condition of continuous invertibility, and 

in (Fedorov, Debbouche, 2013; Fedorov, et al. 2015) the case of a degenerate operator A is consid-

ered and, according to the terminology of the authors, of a strongly-sectorial ( )pL,  or bounded 

( )pL,  operator .B   

In contrast to the listed works, during the development of problem (2), (3) solution, the domain of 

the operator A definition is not assumed to be dense, and other conditions, except for the estimate 

(1) to the operators A  and B , as well as the Banach space E, are not superimposed. 

The first-order equations in the case of a non-dense domain for the determination of operator coef-

ficients were considered earlier in (Da Prato, Sinestrari, 1987; Favini, Yagi, 1995). Under the as-

sumptions made for the operators A  and B , the direct Cauchy problem for a degenerate first-order 

equation was studied in (Sil’chenko, 2002). In particular, an estimate of the form (1) is valid for a 

series of differential operators with non-=regular boundary conditions see (Sil'chenko, 1997) In ( 

Sil'chenko, 2002), as an example of the operators A  and B , satisfying the term 1, the following 
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operators are given in the Banach space :)1,0()1,0( pp LLE = 
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As was established in ( Sil'chenko, 2002), the estimation (1) was performed for the operators A  and 

B  at 
p

r
2

1

2

1
+= , where 31  p . 

DEVELOPMENT. 

Study methods. 

The study of abstract equations with fractional derivatives is performed by the methods of operator 

theory and operator special functions. Various operator relations, a number of operator characteris-

tics (spectrum, resolvent), the basic theorems of functional analysis, etc. are used. A big role is as-

signed to special functions.  

Main results. 

1. Cauchy type problem. Let's introduce the operator function. 


−

−

−=











dBAAtE
i

t
tU 1

,

1

)()(
2

)( ,   (4) 

which contains the function of Mittag-Leffler type under the integral sign 
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 , 0,0   . 

Let's show that the integral in (4) is absolutely convergent. To do this, let's represent the Mittag-

Leffler function in the form (see formulas (2.2.31), (2.1.1) from (Pshu, 2005). 
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where the Wright-type function (see (Pshu, A.V., 2005), Chapter 1) is defined by 
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For a Wright-type function )(0,1
,1 ze −  the following inequality holds (see (Pshu, 2005), Lemma 1.2.7) 

( ),exp)()( )1(10,1
,1


  −−− zzСze n  ,0z  ,0    (6) 

where 
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Taking (1), (4), (5) and the form of the integration contour   at , i+=  22
0 )1( r +−=  

we have the following: 

( ) +++−− −
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The estimate (6) ensures the absolute convergence of the integral in (7). Changing the order of 

integration, we obtain the following 

.)exp()()(
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− −−   (8) 

In the inner integral of (8) we make the substitution  =rs0 . Then, 
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In the last integral of (9), we divide the interval of integration by the number 0b  and estimate 

each of the integrals obtained. We will have the following: 
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The integrals in (10) are calculated (see (10), the equation (2.2.3) and (2.2.31) and, taking into ac-

count the asymptotics of the Mittag-Leffler function at ),2(,20    and →z  
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we obtain the inequality 

( ) ).exp()()( 11)12(
5,

11)12(
4 ttMtEttMtU rr 


  −−−−− +  (11) 

Hence, )(tU  is a continuous operator-valued function in )(EL  at 0t . Moreover, at 0t  it has a 

continuous fractional derivative. Indeed, since )1(6  + M , then, similarly to the estimates (7) – 

(11) we obtain the following: 
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Thus,  

)exp()( 11)22(
5 ttMtUD r  −− .   (12) 

Let's note that integrals were used to obtain the estimate (12) (see (10), the equation (2.2.3) 

,)(
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The last integral converges at 122 −− r , therefore the term 132  r  is imposed in the inequal-

ity. Let's note that if 1= , then this condition does not arise for the parameter r (see Sil'chenko, 

2002) and for a first-order equation it can be 10  r . 

Theorem 1. Suppose that the term 1 is satisfied. Then at any Eu 0  the function 0
1 )()( utUBtu −=  

is the solution of the problem (2), (3) and the following estimate is fair at that 

),exp()( 11)12(
7 ttMtu r  −−  07 M .  (13) 

Proof. The operator D can be applied to the operator function )(tU  defined by the equality (4). 

After obvious transformations, using the equality (5), we obtain the following: 
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Therefore, )()(1 tUtUDAB =− 
, thus )()( tuBtuAD =

 and the function )(tu  satisfies the equation 

(2). 

Let's show that the function )(tu  satisfies the initial condition (3). Using (5), we put down )(tU  in 

the following form: 
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To this equality we apply the bounded operator −− 11IAB . We will have the following: 


−−−− −+=
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The integral in (15) converges absolutely and at 0→t  it tends to the integral 
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dBAA
i

1)(
1

2

1
,    (16) 

which, as we shall show below, is equal to zero. Indeed, let's consider the circle 222 R=+  and 

denote its part via R , that lies to the right of the curve , and via R  – the part of the curve  , ly-

ing inside the circle of the radius R . The integral of an analytic function 
11 )( −− − BAA   over a 

closed contour RR   makes zero. We will stretch this contour, striving →R . At that, in view 

of the estimate (1)  

rrr R

M
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i
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−
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1

2

1
)(

1

2

1 1 ,  (18) 

where ( ) ,2  – the angle of inclination of the tangent to the curve   at 0+→ . 

From the inequality (17) at →R  the equality equal to integral zero follows (16), and from (15) 

the following equality follows:  

111

0
)(lim −−−

→
= ABtUIAB

t

 ,     (18) 

and, thus,  

0
11

0
)(lim uABtuAI

t

−−

→
=

, 

i.e., the function )(tu  also satisfies the initial term (3). 

Finally, the estimate (13) follows from (11). The theorem is proved. 
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Theorem 2. Suppose that term 1 is satisfied and the operator A is closed. Then at any Eu 0  the 

problem (2), (3) has a unique solution in the class of functions that satisfy the inequality (13). 

Proof. Suppose that the function )(tv  satisfies the equation (2), zero initial condition (3) and admits 

the estimate (13). Then we can consider the function 

 −−= −
t

dssvstEsttw

0

,
1 )())(()(),( 


  ,  Re . 

We apply the operator B to the function ),( tw  and taking into account the fractional integration 

formula by parts see (Samko, et al. 1993), formula (2.64), we obtain the following 

=−−= 
−

t

dssBvstEsttBw

0

,
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t
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at that we used the notation )()( 1 tuI
dt

d
tuD bb
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−− 








−=  – the right-hand fractional Riemann-

Liouville derivative, and 
−−

=−
−

b

t

b d
t

u
tuI 





 



)(

)(

)1(

1
)(1  – the right-hand fractional Riemann-

Liouville integral. 

Thus, 0),()( −  twBA , and since   belongs to A - resolvent set of the operator B, then  

0)())(()(),(

0

,
1 −−= 
−

t

dssvstEsttw 


  ,  Re .  (19) 

Let's consider an integral equation with an unknown function )(t  
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which has a unique solution (see Rance, 2009 p. 123), which, taking into account (19), is represent-

able in the following form: 

)()())(()()()(

0

,
1 tvdssvstEsttvt

t

=−−+= 
− 


  .  (21) 

From the equations (20), (21) we derive the equality 0)()()(
)(

1

0

1 =−



− tvIdssvst

t



, from 

which, after the application of the operator D  we obtain the set 0)( tv . The theorem is proved. 

Let then )(tf  – is a given function with the values in E  and Eu 0 . Let's consider the problem of 

the function )(tu  determination, satisfying the inhomogeneous equation: 

),()()( 1 tfABtuBtuAD −+=
     (22) 

And the initial term 

0
11

0
)(lim uABtuAI

t

−−

→
= .     (23) 

Theorem 3. Let's assume that the term 1 is satisfied, the operator A is closed, and the function 

)),,0(()( ECtf   is absolutely integrable at zero and Eu 0 . Then there is a unique solution of 

the problem (22), (23), which has the following form 

 −+= −−
t

dssfstUButUBtu

0

1
0

1 )()()()( ,   (24) 

where the operator function )(tU  is defined by (4). 

Proof. It is sufficient to verify that the function 
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t

dssfstUBtw

0

1 )()()(  
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satisfies the equation (22) and the nonzero initial condition (23). 

Taking into account (14), (18), after obvious transformations we will have 
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In (25), under the integral sign s  the continuous st −  function is obtained, therefore 
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Thus, the function )(tw  meets the equation (22). 

We further believe that the function )(tw  satisfies the zero-initial condition (23). 

Using the properties of fractional integration, we obtain the following 
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0
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It follows from the equation (26), (18) that 

.0)(lim 1

0
=−

+→
twAI

t

  

Thus, the function )(tw  satisfies the zero-initial condition (23), and the function )(tu  defined by 

(24) is the unique solution of the problem (22), (23). The theorem is proved. 

2. Inverse problem of Cauchy type. Then let's consider the problem of the function )(tv determi-

nation, belonging to )(BD  at ]1,0(t  and the element EpAB −1
 from the terms 

pABttvBtvAD k 11)()( −−+= ,     (27) 

0
11

0
)(lim vABtvAI

t

−−

→
= ,      (28) 

1
1

)(lim vtvI
t

=
→

 ,      (29) 

where 0k , 0  (
I is a single operator at 0= ). The interval ]1,0(t  is chosen for a more 

compact recording of the formulas. 

Definition 2. The solution of the problem (27) – (29) is the pair ( )pABtv 1),( −
, for which 

))(],1,0(()( BDCtv  , ))(],1,0(()( 11 ADCtvI −
, EpAB −1

, and at that )(tv  and pAB 1−
 satisfy 

the equations (27) – (29). 

The considered problem (27) - (29) is called the inverse problem here, in contrast to the direct prob-

lem of Cauchy type (27), (28) with the known element EpAB −1
. It can also be interpreted as the 

restoration in the equation (27) of a nonstationary term pABt k 11 −−
 by the means of the additional 

boundary condition (29). A review of publications on inverse problems for the equations of integer 

order can be found in (Prilepko, et al. 2000), the inverse problem for the equation with the fraction-
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al Riemann-Liouville derivative was studied in (Glushak, 2010), and the degenerate inverse prob-

lem (27) - (29) is considered for the first time. 

As follows from Theorem 3, in order to solve the inverse problem (27) - (29), it is necessary to find 

the function )(tv  and the parameter pAB 1−  such that the following equation was true: 

 −+= −−−
t

k dspstUBsvtUBtv

0

11
0

1 )()()(    (30) 

and the equation (29) is carried out. 

From (30) and the boundary condition (29) we obtain the equation 

1
1

1
0

1

1
)(lim)()(lim vptUIBkvtUIB k

tt
=+ +−

→

−

→

  that we rewrite in the following form to find the 

unknown element pAB 1−
:  

qpQ = ,     (31) 

где  ( )0
1

1 )1(
)(

1
vUIBv

k
q −−


= ,           =−

+
= −−+

1

0

11 )()1(
)(

1
dspsUBs

k
Q k

p



 

  =−−
+

= −−
−

−+
1

0

11
,

1
1 )()(

2
)1(

)(

1
dsdpBAABsE

i

s
s

k

k 








  

=−= −−−+

→
 







 dpBAABsEsI
i

k

s

11
,

1

1
)())((lim

2

1
 






 dpBAABE
i

k
11

, )()(
2

1 −−
++ −=  .   (32) 

Thus, the unique solvability of the inverse problem (27) - (29) is reduced to the problem of a unique 

solution existence pAB 1−
 of the equation (31) with the operator Q set by (32). 

Just as in inverse problems for nondegenerate equations, in the case under consideration, the loca-

tion of the zeros of some analytic function plays an important role in establishing the solvability, in 
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our case it is the function )(, zE k++ . Therefore, we give the results of (Sedletskiĭ, 2000; Suleri, 

and Cavagnaro, 2016) we need about their disposition. In Theorem 1 (Sedletskiĭ, 2000; Bernasconi, 

and Emilio, 2018) it was established that at 0),1,0( ++ k  and a suitable numbering, all 

sufficiently large zeros by modulus }0{\, Znn    of the function )(, zE k++  are simple and at 

→n  the following asymptotics is true: 

→+
+


+







 
+−++=  no

k
n

i
nkinn ),1(

)(
lnsign

2
2ln)1(21 .        (33) 

As we noted earlier, the generalized resolvent 
1)( −− BA  of the operator B  is defined in the region 

 , bounded by the curve   to the left with the equation 22
0 )1( r +−= , 00   . Tak-

ing into account the asymptotics of zeros n  of the function )(, zE k++ , defined by equality 

(33), we can assert that outside   there can be only a finite number of zeros 

0,,2,1, nnn = . 

Let's assume that all these zeros 0,,2,1, nnn =  belong to A-resolvent set )(BA . Let's sur-

round each of these points by a circular neighborhood 0,,2,1, nnn =  of such a small radius that 

there are no points in A spectrum of the operator B, that is, the points from )(\)( BCB AA  = . 

This can be done, since the A-resolvent set of the operator B is open. THUS, A-spectrum of the op-

erator B is located in the region bounded by the lines   and 0,,2,1, nnn = . Let's denote by 


0

1

~
n

n
n

=

=  , where ~  is the contour   shifted to the right, the circles n  are done clockwise. 

In order to prove the existence of a unique solution pAB 1−
 for equation (31), we introduce the fol-

lowing operator for consideration: 

Exdz
zE

xBzAAzE

i
P

k

k
x 

−
= 

 ++

−
+

,
)(

)()(

2

1

,

1
,






.   (34) 
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Let's note that, similarly to (12), it is proved that the integral is absolutely convergent in (34) by the 

choice of the contour , the inequality (1) and the asymptotic behavior of the Mittag-Leffler func-

tion at 20   и →z . 

Let Ex , then substituting (34) into (32), and using the identity 






−

−−−
=−−

−−
−−

z

BzABA
BzAABA

11
11 )()(

)()( , 

We obtain the following equation: 
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11
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 .   (35) 

The integral is absolutely convergent in (35). Changing the order of integration, we will have the 

following: 

=
−

−
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 ++
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=−=−= 
−−
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−−
+ dzxBzAABzE

i
dzxBzAABzE

i
kk




 ~

11
,

11
, )()(

2

1
)()(

2

1
 

xUIB k )1(1 −+−= . 

The expression similar to (36) appears if we consider the element BQx . Indeed, taking into account 

the equalities (32), (14), (18) and assuming 01−+ k , we obtain the following: 
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 =−
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= −−+
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)(

)()1(
)(

1
dsxsUI

ds
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s
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dsxsUs

k
BQx kk 
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11
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)(

dsxsUIskxsUIs
k

AB kk  


 

.)1(
)(

1 11 xUIABxAB
k
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−+−− +
+

−=     (37) 

Further analysis of the equation (31) solvability will be carried out when the following condition is 

satisfied. 

Term 2. Let 01−+ k  and on )(BD  the operators ,A  11 )(, −− − BAB   commute.  

If the term 2 is satisfied, then, introducing the notation pABp 1
1

−= , 






 dpBAE
i

pQ k
−

++ −= 1
1

,11 ))((
2

1
,   (38) 

put down the equation (31) in the following form  

qpQ =11 . 

Let’s consider the operator ))((
~

BAPkQ −+=  . By virtue of equalities (36), (37) and condition 

1 for )(1 BDp   the following relations hold: 

1
1

11111 ))(())((
~

ppABpBQAQPkpBQAPQkpQQ ==−+=−+= − , (40) 

1
1

11111 ))(())((
~

ppABpBQAQPkpBQAPQkpQQ ==−+=−+= − . (41) 

The equations (40), (41) allow to prove the following criterion. 

Theorem 4. Let the operator A is closed and the conditions 1 and 2 are fulfilled. In order that the 

inverse problem (27) - (29) at any )(, 10 BDvEv   is uniquely solvable, it is necessary and suf-

ficient that every point 0,,2,1, nnn = , that is the zero of the function )(, zE k++  and lying to 

the left of  , belongs ti A - resolvent set )(BA . 
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Proof. Let us prove a sufficient condition of the theorem. If the solution of the equation (39) exists, 

then, as follows from (41), it is unique and has the following form: 

( )0
1

1
1

1 )1(
)(

1~
vUIBv

k
qQpABp −− −


=== , 

and it follows from (40) that pABp 1
1

−=  is the solution of the equation (39). 

The function )(tv  is defined by the equation (30) in the following way: 

=−+= 
−−− dspstUBsvtUBtv

t
k

0

11
0

1 )()()(  

dsdpABBAstEsts
i

vtUB
t

k 







 11

0

,
11

0
1 )())(()(

2

1
)( −−−−− −−−+=   . 

Proof of necessity. Let 0,,2,1, nnn =  is an arbitrary point that is the zero of the function 

)(, zE k++  and located to the left of . Let's consider the bounded operator nS , given by the 

equation 

dzBzA
z

zE

i
S

n

k
n

1,
)(

)(

2

1 −++
−

−
= 






. 

Integrating along the contour  both sides of the identity 

z

zE
BzAAzEBzABA

z

zE

n

k
kn

n

k

−
+−=−−

−

++−
++

−++









 )(
)()())((

)( ,1
,

1,
, 

Due to the closedness of the operators A and B and the analyticity of the function 
z

zE

n

k

−

++



 )(,
 in 

the domain located from   and to the left of (38), we arrive to the following relation:  

1)( QSBA nn =− .     (42) 
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If the inverse problem (27) - (29) at any )(, 10 BDvEv   is uniquely solvable, then the operator 

1Q  has an inverse operator Q
~

 determined along the whole )(BD . Then, due to (42), the following 

equalities are true: 

ExxSQBAxSBAQxQQx nnnn −=−== ,
~

)()(
~~

1  , 

)(,)(
~~

)(
~

1 BDxxBASQxQSBAxQQx nnnn −=−==  . 

Thus, the operator nSQ
~

 is defined on the whole E  and is inverse operator with respect to 

)( BAn − . Therefore, n  belongs to A -resolvent set )(BA and the necessity, and, thus, the theo-

rem is proved. 

CONCLUSIONS. 

According to the operator coefficients of the equation, they designed some operator function - the 

resolving operator belonging to the space of bounded linear operators, and with its help they estab-

lished a unique solvability of Cauchy-type problem for a degenerate fractional abstract equation 

with a non-densely defined operator coefficient. 

Using the designed resolving operator, it was possible to study also the unique solvability of a cor-

responding inverse problem. 

An example of operators is given satisfying the conditions imposed in the work. 
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