

1

Revista Dilemas Contemporáneos: Educación, Política y Valores.

http://www.dilemascontemporaneoseducacionpoliticayvalores.com/

Año: VI Número: Edición Especial Artículo no.:75 Período: Diciembre 2018.

TÍTULO: Investigación y optimización del Sistema de Cifrado ElGamal.

AUTOR:

1. Alisher R. Zhumaniezov.

RESUMEN: Este artículo describe la optimización del esquema de encriptación ElGamal mediante

la introducción de diferentes esquemas de optimización. Entre todos los esquemas, se eligieron los

siguientes: reducción de Barrett, reducción de Montgomery y reducción de Montgomery con

esquemas de optimización de almacenamiento en caché. El algoritmo de cifrado de clave pública El

Gamal fue propuesto por Taher Elgamal en 1985. El esquema completo fue desarrollado en base al

protocolo Diffie-Hellman. La estabilidad criptográfica de este algoritmo se basa en la dificultad de

calcular el logaritmo discreto en un campo finito. La falta de una patente para un algoritmo hace

que sea una alternativa más barata al algoritmo RSA.

PALABRAS CLAVES: esquema de encriptación ElGamal, módulo de exponenciación binaria,

reducción de Barrett, reducción de Montgomery, aritmética de bits.

TITLE: Research and optimization of ElGamal Encryption System.

AUTHOR:

1. Alisher R. Zhumaniezov.

http://www.dilemascontemporaneoseducacionpoliticayvalores.com/

2

ABSTRACT: This article describes the optimization of ElGamal encryption scheme through the

introduction of different optimization schemes. Among all the schemes, the following were chosen:

Barrett reduction, Montgomery reduction and Montgomery reduction with caching optimization

schemes. ElGamal public key encryption algorithm was proposed by Taher Elgamal in 1985. The

complete scheme was developed based on the Diffie-Hellman protocol. The cryptographic stability

of this algorithm is based on the difficulty of calculating the discrete logarithm in a finite field. The

lack of a patent for an algorithm makes it a cheaper alternative to the RSA algorithm.

KEY WORDS: ElGamal encryption scheme, Binary exponentiation modulo, Barrett’s reduction,

Montgomery reduction, bit arithmetic.

INTRODUCTION.

Cryptography is a science engaged in the development of cryptosystems, that is, the study of

mathematical methods for transforming information in order to protect systems from unauthorized

access.

The goal of this paper is to optimize the implementation of ElGamal encryption system. Our main

goal is to reduce time for encryption and decryption. To do this, we will optimize the work of

exponentiation. We must also measure winnings by time.

In the age of modern technology, time is a very valuable resource. Therefore, an important indicator

of the implementation is its calculation speed. The optimization process goes in two directions:

1. Reducing the asymptotics of the algorithm. Extremely difficult task, as it is not always possible,

but it guarantees the gain in time for large values of the parameters.

2. The decrease in the coefficient in the asymptotics. There are several ways to achieve:

parallelization, reduction to bit arithmetic, splitting into subtasks, etc. The main difficulty is that it

is sometimes difficult to calculate the resulting change in a constant.

3

DEVELOPMENT.

The ElGamal public-key encryption algorithm was proposed by Taher Elgamal in 1985 [Elgamal T.

A., 1985]. The whole scheme was developed based on the Diffie-Hellman protocol. The

cryptographic stability of this algorithm is based on the difficulty of calculating the discrete

logarithm in a finite field. The lack of a patent for an algorithm makes it a cheaper alternative to the

RSA algorithm.

The most complex operations in exponentiation are modulo operations and multiplication

operations. Therefore, our work will be aimed at optimizing precisely these operations.

In the course of work, we will look at the effectiveness of well-known optimizations. We will

choose the most effective ones and on the basis of it we will implement an optimized cryptosystem.

Methods.

ElGamal encryption scheme.

The encryption algorithm consists of three stages [Б. А. Фороузан; Menezes A. J. et.al., 1996]:

1. Key generation:

a. A random prime is chosen.

b. The number is chosen - the primitive root of .

c. A random number is selected in the interval

d. Calculated .

e. - is public key. is the private key.

2. Encryption Algorithm:

a. The message is divided into blocks.

b. Each block is encoded by the number .

c. A session key is selected in the interval .

d. The numbers ; .

4

e. A pair of numbers is called the ciphertext of the block.

3. Decryption Algorithm:

a. The value of the block is restored by the formula
 .

b. According to the values of the block, we restore the original message.

Let us prove the correctness of the algorithm.

1.

2.

3.

Thus, the correctness of the algorithm is proved.

Binary exponentiation modulo.

Exponentiation modulo using of sequential multiplication by a number n times is too long, then in

practice a binary exponentiation algorithm is used.

This algorithm is based on the following idea [Рябко Б. Я., et. al., 2004]:

1.

2.

There are two implementations of the algorithm in the direction of sorting bits of a degree: from the

high-order bit to the low-order one, and vice versa, from the low-order to the highest. This paper

discusses the option from the high bit to the low bit.

Algorithm Description:

1. Initially, the result is 1.

2. Enumerate all bits from high to low.

3. We square the result modulo.

4. If the current bit is one, then multiply the result by the original number .

5. Go to the next bit.

5

 Barrett's reduction.

Another option for replacing the taking modulo is Barrett's reduction.

The main idea of Barrett's reduction is the representation of the remainder in the following form

[Cao, Z. et. al., 2014; Lim C. H, et. al., 1997]:

 (1)

 , where

 (2)

For greater accuracy and speed of operation, take the minimum , such that , that is,

 .

Thus, the Barrett reduction is calculated as follows [5] [6]:

 (3)

 (4)

 (5)

Now we give the exponential algorithm:

1. Calculate in advance

 .

2. Initially, the result is 1.

3. Enumerate all bits from high to low.

4. In the result we write the reduction of Barrett from the square of the result.

5. If the current bit is equal to one, then in the result we write the Barrett's reduction from the

product of the result by the number .

6. Go to the next bit.

6

Montgomery Reduction.

Since the procedure for taking an arbitrary module is a time-consuming operation, they try to

replace it with a taking by module - a power of two. One such method is the Montgomery

reduction.

The Montgomery Theorem [Ors S. B; et.al, 2003; Белов А; 1999]:

 , – natural mutually simple numbers, – => ,

 , and

 .

We introduce the function of the Montgomery multiplication [Ors S. B., et. al. 2003, Белов, А.

1999].

 (6)

However, we note that the calculation is not directly effective because of the search for the inverse

element, therefore, when implementing, we use the Montgomery theorem [Ors S. B; et. al., 2003;

Белов, А., 1999]:

 (7)

 (8)

Note that if we use the integer power of two as , then we can get a big time gain due to bit

arithmetic.

We call the -residual of number:

 (9)

Note a number of properties required in our work [Ors S. B. et. al., 2003; Белов А., 1999]:

1. .

2. .

7

Now we can present the exponentiation algorithm:

1. Initially, the result is .

2. Calculate -residual of .

3. Enumerate all bits from high to low.

4. In the result, write the value of the Montgomery product of the result on the result.

5. If the current bit is equal to one, then in the result we write the Montgomery product of the result

by the -residual of .

6. Go to the next bit.

7. Return the Montgomery product of the result and 1.

Montgomery Reduction with caching.

Also, in this paper we'll consider modification of Montgomery reduction. The main idea was using

caching in (7) of multiplication :

 (10)

 (11)

Results and Discussion.

Barrett’s reduction.

In Barrett’s reduction, we have next operations:

1. : 1 multiplication.

2. q: 1 multiplication + 1 integer division by

power of two => 1 multiplication + 1 shift.

3. u: 1 multiplication + 1 subtraction.

4. : no more than 1 subtraction.

8

5. Total number of operations: 3 multiplication

+ 1 shift + 2 subtraction

For each operation, we assume complexity [Егоров Д. Ф. 1923; Акритас А. 1994]:

 (12)

 (13)

 (14)

Then total complexity of one iteration was:

 (15)

Montgomery Reduction.

In Montgomery reduction we have next operations:

1. u: 4 multiplication + 1 addition + 1 integer

division by power of two + 1 modulo residue by power of two => 4 multiplication + 1 addition + 1

shift + 1 bitwise and.

2. : no more than 1 subtraction.

3. Total number of operations: 4 multiplication

+ 1 addition + 1 shift + 1 bitwise and + 1 subtraction.

For each operation, we assume complexity (12), (13), (14) and [Егоров Д. Ф., 1923; Акритас А.

1994]:

 (16)

 (17)

Then total complexity of one iteration was:

 (18)

9

Montgomery Reduction with caching.

In Montgomery reduction, we have next operations:

1. : 1 multiplication.

2. u: 2 multiplication + 1 addition + 1 integer

division by power of two + 1 modulo residue by power of two => 4 multiplication + 1 addition + 1

shift + 1 bitwise and.

3. : no more than 1 subtraction.

4. Total number of operations: 3 multiplication

+ 1 addition + 1 shift + 1 bitwise and + 1 subtraction

For each operation, we assume complexity (12), (13), (14), (16) and (17) [Егоров Д. Ф. 1923;

Акритас А. 1994]. Then total complexity of one iteration was:

 (19)

64-bit module.

Figure 4.1. Comparison of the total runtime with the original algorithm (64-bit).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Total runtime

Standard algorithm Barret's reduction

Montgomery reduction Montgomery reduction with caching

10

Barret’s reduction: As can be seen from the graph above, the using of Barrett's reduction hardly

benefits the standard exponentiation.

Montgomery reduction: As can be seen from the graph above, the using of a pure reduction of

Montgomery gives a loss in time.

Montgomery reduction with caching: As can be seen from the graph above, the using of the

Montgomery reduction with caching gives a considerable gain in time.

128-bit module.

Figure 4.2. Comparison of the total runtime with the original algorithm (128-bit).

Barret’s reduction: As can be seen from the graph above, the using of Barrett's pure reduction gives

a loss in time.

Montgomery reduction: As can be seen from the graph above, the using of a pure reduction of

Montgomery gives a loss in time.

Montgomery reduction with caching: As can be seen from the graph above, the using of the

Montgomery reduction with caching gives a considerable gain in time.

0

0.2

0.4

0.6

0.8

1

1.2

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Total runtime

Standard algorithm Barret's reduction

Montgomery reduction Montgomery reduction with caching

11

1024-bit module.

Figure 4.3. Comparison of the total runtime with the original algorithm (1024-bit).

Barret’s reduction: As can be seen from the graph above, the using of Barrett's pure reduction gives

a loss in time.

Montgomery reduction: As can be seen from the graph above, the using of a pure reduction of

Montgomery gives a loss in time.

Montgomery reduction with caching: As can be seen from the graph above, the using of the

Montgomery reduction with caching gives a considerable gain in time.

CONCLUSIONS.

The theoretical and practical questions of the ElGamal encryption system are considered, and it was

developed a program containing the implementation of all the considered optimization schemes for

the exponentiation modulo. Also, in the paper, to evaluate the efficiency of optimization of the

exponentiation modulo, experiments were performed and the results are shown.

0

5

10

15

20

25

30

35

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Total runtime

Standard algorithm Barret's reduction

Montgomery reduction Montgomery reduction with caching

12

In the course of this work, the following conclusions were made on the schemes considered:

 Barrett’s reduction — showed the result a little worse than the standard algorithm. At small

values total runtime was close to standard, but at large values total runtime increased.

 Montgomery reduction — showed the worst result among all the considered schemes. Total

runtime increased by more than 1.5 times.

 Montgomery reduction with caching — showed the best result among all the considered

schemes. Total runtime was decreased by about 33%

The further direction of the study may be the reduction of the work time spent on one iteraction.

Among the possible approaches: the disclosure of internal function calls the use of a lower-level

language, and the use of a faster algorithm for selecting coefficients.

Acknowledgements.

The work is performed according to the Russian Government Program of Competitive Growth of

Kazan Federal University.

BIBLIOGRAPHIC REFERENCES.

[1] Акритас А., (1994) Основы компьютерной алгебры с приложениями: пер. с англ., М.,

Мир, 1994, 544 с.

[2] Cao, Zhengjun; Wei, Ruizhong; Lin, Xiaodong., (2014) A Fast Modular Reduction Method.

Recuperado de: https://eprint.iacr.org/2014/040.pdf

[3] Белов А., (1999) Сложность алгоритмов/ Белов А. Тихомиров В. — КВАНT № 2, pp. 8-

11

[4] Егоров Д. Ф., (1923) Элементы теории чисел., М., Петроград: Госиздат, 202 с.

[5] ElGamal T. A, (1985) Public-Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms/ El Gamal T. — IEEE, 1985. Vol. 31, pp. 469–472.

https://eprint.iacr.org/2014/040.pdf

13

[6] Б. А. Фороузан., (1985) Схема цифровой подписи Эль-Гамаля/ Пер. А. Н. Берлин. —

Курс лекций. Recuperado de: http://www.rtsu.tj/upload/files/элподписъ7-сем.PDF

[7] Lim C. H; Hwang, H.S; Lee, P.H; Fast Modular Reduction With Precomputation.

Recuperado de: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.8501

[8] Menezes A. J., Oorschot P. V., Vanstone S. A. (1996) The ElGamal signature scheme/—

CRC Press, pp. 816.

[9] Ors S. B; Batina L; Preneel B; Vandewalle J; (2003) Hardware Implementation of a

Montgomery Modular Multiplier in a Systolic Array/ Proceedings of the International

Parallel and Distributed Processing Symposium, p. 8. DOI: 10.1109/IPDPS.2003.1213341

[10] Рябко Б. Я; Фионов А. Н., (2004) Основы современной криптографии для

специалистов в информационных технологиях/ Рябко Б. Я.,— Научный мир, pp.173 с.

DATA OF THE AUTHOR.

1. Alisher R. Zhumaniezov. Kazan Federal University. Email: myzerix58@gmail.com

RECIBIDO: 4 de noviembre del 2018. APROBADO: 15 de noviembre del 2018.

http://www.rtsu.tj/upload/files/элподписъ7-сем.PDF
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.8501
https://doi.org/10.1109/IPDPS.2003.1213341
mailto:myzerix58@gmail.com

