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la introducción de diferentes esquemas de optimización. Entre todos los esquemas, se eligieron los 

siguientes: reducción de Barrett, reducción de Montgomery y reducción de Montgomery con 

esquemas de optimización de almacenamiento en caché. El algoritmo de cifrado de clave pública El 

Gamal fue propuesto por Taher Elgamal en 1985. El esquema completo fue desarrollado en base al 

protocolo Diffie-Hellman. La estabilidad criptográfica de este algoritmo se basa en la dificultad de 

calcular el logaritmo discreto en un campo finito. La falta de una patente para un algoritmo hace 

que sea una alternativa más barata al algoritmo RSA. 
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ABSTRACT: This article describes the optimization of ElGamal encryption scheme through the 

introduction of different optimization schemes. Among all the schemes, the following were chosen: 

Barrett reduction, Montgomery reduction and Montgomery reduction with caching optimization 

schemes. ElGamal public key encryption algorithm was proposed by Taher Elgamal in 1985. The 

complete scheme was developed based on the Diffie-Hellman protocol. The cryptographic stability 

of this algorithm is based on the difficulty of calculating the discrete logarithm in a finite field. The 

lack of a patent for an algorithm makes it a cheaper alternative to the RSA algorithm. 

KEY WORDS: ElGamal encryption scheme, Binary exponentiation modulo, Barrett’s reduction, 

Montgomery reduction, bit arithmetic. 

INTRODUCTION. 

Cryptography is a science engaged in the development of cryptosystems, that is, the study of 

mathematical methods for transforming information in order to protect systems from unauthorized 

access. 

The goal of this paper is to optimize the implementation of ElGamal encryption system. Our main 

goal is to reduce time for encryption and decryption. To do this, we will optimize the work of 

exponentiation. We must also measure winnings by time. 

In the age of modern technology, time is a very valuable resource. Therefore, an important indicator 

of the implementation is its calculation speed. The optimization process goes in two directions: 

1. Reducing the asymptotics of the algorithm. Extremely difficult task, as it is not always possible, 

but it guarantees the gain in time for large values of the parameters. 

2. The decrease in the coefficient in the asymptotics. There are several ways to achieve: 

parallelization, reduction to bit arithmetic, splitting into subtasks, etc. The main difficulty is that it 

is sometimes difficult to calculate the resulting change in a constant. 
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DEVELOPMENT. 

The ElGamal public-key encryption algorithm was proposed by Taher Elgamal in 1985 [Elgamal T. 

A., 1985]. The whole scheme was developed based on the Diffie-Hellman protocol. The 

cryptographic stability of this algorithm is based on the difficulty of calculating the discrete 

logarithm in a finite field. The lack of a patent for an algorithm makes it a cheaper alternative to the 

RSA algorithm. 

The most complex operations in exponentiation are modulo operations and multiplication 

operations. Therefore, our work will be aimed at optimizing precisely these operations. 

In the course of work, we will look at the effectiveness of well-known optimizations. We will 

choose the most effective ones and on the basis of it we will implement an optimized cryptosystem. 

Methods. 

ElGamal encryption scheme. 

The encryption algorithm consists of three stages [Б. А. Фороузан; Menezes A. J. et.al., 1996]: 

1. Key generation: 

a. A random prime   is chosen. 

b. The number   is chosen - the primitive root of  . 

c. A random number   is selected in the interval         

d. Calculated           . 

e.         - is public key.   is the private key. 

2. Encryption Algorithm: 

a. The message is divided into blocks. 

b. Each block is encoded by the number   . 

c. A session key   is selected in the interval        . 

d. The numbers            ;               . 
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e. A pair of numbers         is called the ciphertext of the   block. 

3. Decryption Algorithm: 

a. The value of the block is restored by the formula         
        . 

b. According to the values of the block, we restore the original message. 

Let us prove the correctness of the algorithm. 

1.                                        

2.   
                    

3.      
                                                           

Thus, the correctness of the algorithm is proved. 

Binary exponentiation modulo. 

Exponentiation modulo using of sequential multiplication by a number n times is too long, then in 

practice a binary exponentiation algorithm is used. 

This algorithm is based on the following idea [Рябко Б. Я., et. al., 2004]: 

1.                              

2.                                    

There are two implementations of the algorithm in the direction of sorting bits of a degree: from the 

high-order bit to the low-order one, and vice versa, from the low-order to the highest. This paper 

discusses the option from the high bit to the low bit. 

Algorithm Description: 

1. Initially, the result is 1. 

2. Enumerate all bits from high to low. 

3. We square the result modulo. 

4. If the current bit is one, then multiply the result by the original number  . 

5. Go to the next bit. 
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 Barrett's reduction. 

Another option for replacing the taking modulo is Barrett's reduction. 

The main idea of Barrett's reduction is the representation of the remainder in the following form 

[Cao, Z. et. al., 2014; Lim C. H, et. al., 1997]:  

           
 

 
                                            (1) 

 
 

 
   

    

    
   

   

  
 , where    

  

 
                                (2) 

For greater accuracy and speed of operation, take the minimum  , such that     , that is, 

         . 

Thus, the Barrett reduction is calculated as follows [5] [6]: 

   
   

  
                                                         (3) 

                                                           (4) 

         
        

             
                                     (5) 

Now we give the exponential algorithm: 

1. Calculate in advance    
  

 
 . 

2. Initially, the result is 1. 

3. Enumerate all bits from high to low. 

4. In the result we write the reduction of Barrett from the square of the result. 

5. If the current bit is equal to one, then in the result we write the Barrett's reduction from the 

product of the result by the number  . 

6. Go to the next bit. 
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Montgomery Reduction. 

Since the procedure for taking an arbitrary module is a time-consuming operation, they try to 

replace it with a taking by module - a power of two. One such method is the Montgomery 

reduction. 

The Montgomery Theorem [Ors S. B; et.al, 2003; Белов А; 1999]: 

 ,   – natural mutually simple numbers,     –           =>        ,        

                , and 
 

              . 

We introduce the function of the Montgomery multiplication [Ors S. B., et. al. 2003, Белов, А. 

1999]. 

                                                        (6) 

However, we note that the calculation is not directly effective because of the search for the inverse 

element, therefore, when implementing, we use the Montgomery theorem [Ors S. B; et. al., 2003; 

Белов, А., 1999]: 

                                                   (7) 

           
        

             
                                  (8) 

Note that if we use the integer power of two as  , then we can get a big time gain due to bit 

arithmetic. 

We call the      -residual of   number: 

                                                          (9) 

Note a number of properties required in our work [Ors S. B. et. al., 2003; Белов А., 1999]: 

1.             . 

2.                                    . 
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Now we can present the exponentiation algorithm: 

1. Initially, the result is        . 

2. Calculate      -residual of  . 

3. Enumerate all bits from high to low. 

4. In the result, write the value of the Montgomery product of the result on the result. 

5. If the current bit is equal to one, then in the result we write the Montgomery product of the result 

by the      -residual of  . 

6. Go to the next bit. 

7. Return the Montgomery product of the result and 1. 

Montgomery Reduction with caching. 

Also, in this paper we'll consider modification of Montgomery reduction. The main idea was using 

caching in (7) of multiplication    : 

                                                          (10) 

                                                    (11) 

Results and Discussion. 

Barrett’s reduction. 

In Barrett’s reduction, we have next operations: 

1.  : 1 multiplication. 

2. q: 1 multiplication + 1 integer division by 

power of two => 1 multiplication + 1 shift. 

3. u: 1 multiplication + 1 subtraction. 

4.        : no more than 1 subtraction. 
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5. Total number of operations: 3 multiplication 

+ 1 shift + 2 subtraction 

For each operation, we assume complexity [Егоров Д. Ф. 1923; Акритас А. 1994]: 

                                                              (12) 

                                                                   (13) 

                                                              (14) 

Then total complexity      of one iteration was: 

                                       

                                                           (15) 

Montgomery Reduction. 

In Montgomery reduction we have next operations: 

1. u: 4 multiplication + 1 addition + 1 integer 

division by power of two + 1 modulo residue by power of two => 4 multiplication + 1 addition + 1 

shift + 1 bitwise and. 

2.          : no more than 1 subtraction. 

3. Total number of operations: 4 multiplication 

+ 1 addition + 1 shift + 1 bitwise and + 1 subtraction. 

For each operation, we assume complexity (12), (13), (14) and [Егоров Д. Ф., 1923; Акритас А. 

1994]: 

                                                              (16) 

                                                           (17) 

Then total complexity      of one iteration was: 

                                                     

                                                        (18) 
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Montgomery Reduction with caching. 

In Montgomery reduction, we have next operations: 

1.  : 1 multiplication. 

2. u: 2 multiplication + 1 addition + 1 integer 

division by power of two + 1 modulo residue by power of two => 4 multiplication + 1 addition + 1 

shift + 1 bitwise and. 

3.          : no more than 1 subtraction. 

4. Total number of operations: 3 multiplication 

+ 1 addition + 1 shift + 1 bitwise and + 1 subtraction 

For each operation, we assume complexity (12), (13), (14), (16) and (17) [Егоров Д. Ф. 1923; 

Акритас А. 1994]. Then total complexity      of one iteration was: 

                                                     

                                                        (19) 

64-bit module. 

Figure 4.1. Comparison of the total runtime with the original algorithm (64-bit). 

 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

1
 

4
 

7
 

1
0

 

1
3

 

1
6

 

1
9

 

2
2

 

2
5

 

2
8

 

3
1

 

3
4

 

3
7

 

4
0

 

4
3

 

4
6

 

4
9

 

5
2

 

5
5

 

5
8

 

6
1

 

6
4

 

6
7

 

7
0

 

7
3

 

7
6

 

7
9

 

8
2

 

8
5

 

8
8

 

9
1

 

9
4

 

9
7

 

1
0

0
 

Total runtime 

Standard algorithm Barret's reduction 

Montgomery reduction Montgomery reduction with caching 



 

10 

Barret’s reduction: As can be seen from the graph above, the using of Barrett's reduction hardly 

benefits the standard exponentiation. 

Montgomery reduction: As can be seen from the graph above, the using of a pure reduction of 

Montgomery gives a loss in time. 

Montgomery reduction with caching: As can be seen from the graph above, the using of the 

Montgomery reduction with caching gives a considerable gain in time. 

128-bit module. 

Figure 4.2. Comparison of the total runtime with the original algorithm (128-bit). 

 

Barret’s reduction: As can be seen from the graph above, the using of Barrett's pure reduction gives 

a loss in time. 

Montgomery reduction: As can be seen from the graph above, the using of a pure reduction of 

Montgomery gives a loss in time. 

Montgomery reduction with caching: As can be seen from the graph above, the using of the 

Montgomery reduction with caching gives a considerable gain in time. 
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1024-bit module. 

Figure 4.3. Comparison of the total runtime with the original algorithm (1024-bit). 

 

Barret’s reduction: As can be seen from the graph above, the using of Barrett's pure reduction gives 

a loss in time. 

Montgomery reduction: As can be seen from the graph above, the using of a pure reduction of 

Montgomery gives a loss in time. 

Montgomery reduction with caching: As can be seen from the graph above, the using of the 

Montgomery reduction with caching gives a considerable gain in time. 

CONCLUSIONS. 

The theoretical and practical questions of the ElGamal encryption system are considered, and it was 

developed a program containing the implementation of all the considered optimization schemes for 

the exponentiation modulo. Also, in the paper, to evaluate the efficiency of optimization of the 

exponentiation modulo, experiments were performed and the results are shown. 
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In the course of this work, the following conclusions were made on the schemes considered: 

 Barrett’s reduction — showed the result a little worse than the standard algorithm. At small 

values total runtime was close to standard, but at large values total runtime increased. 

 Montgomery reduction — showed the worst result among all the considered schemes. Total 

runtime increased by more than 1.5 times. 

 Montgomery reduction with caching — showed the best result among all the considered 

schemes. Total runtime was decreased by about 33% 

The further direction of the study may be the reduction of the work time spent on one iteraction. 

Among the possible approaches: the disclosure of internal function calls the use of a lower-level 

language, and the use of a faster algorithm for selecting coefficients. 
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