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INTRODUCTION. 

Numerous methods are used to solve linear and non-linear equations that are difficult to solve using 

analytical methods. Through these methods, the solution is obtained as a boundary of descending 

rows, the members of which are computed by the same iteration formulas. We are looking for a 

simple root of a non-linear equation 𝑓(𝑥)  =  0, where  𝑓 ∶  𝐼 ⊂  𝑅 →  𝑅  for open interval  𝐼 . The 

solution is in two stages - first the roots are located, then the roots are found. To locate the roots, we 

are looking for a closed interval (a,b), in the edges of which the function has different characters 

𝑓(𝑎). 𝑓(𝑏) < 0, which guarantees the presence of at least one root in this interval. Iterative 

formulas are used to specify the roots, with Newton's formula being the most popular and preferred: 

 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
  . (1) 

In approximating the Newton's definite integral is approximated by use of different techniques 

𝑓 (𝑥) =  𝑓 (𝑥𝑛) + ∫ 𝑓′(𝑡)
𝑥

𝑥𝑛
 𝑑𝑡.              (2) 

Many authors have received new methods, modifications of the Newton formula. In order to 

improve of convergence of lines and the number of iterations, many authors have modified 

Newton's formula and developed various iterative scheme using a variety of techniques; for 

example, Chun, offers an iteration formula involving a new weight function (Chun, 2005).  

By approximating the indefinite integral by a Simpson’s formula, Frontini and Sormani offer an 

iterative scheme with order of convergence 3 (Frontini and Sormani, 2004), and Noor using the 

trapezoid formula receive another modification of the Newton method (Noor, 2010; Nazoktabar & 

Tohidi, 2014).  Another approach is used by Homeier (Homeier, 2004; Selvanayaki, 2017), who 

uses the inverse function 𝑥 =  𝑓 (𝑦), instead of 𝑦 =  𝑓 (𝑥) from the Newton’s theorem and 

suggests modification order of convergence 3. For finding new iterative methods using techniques 
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such as quadrature formulas / Newton- Kouts/, homotopy – described in details by Noor (Chun, 

2007) and other techniques of decomposition, as a result of witch methods with cubic and quadratic 

order of convergence are obtained (Chun, 2005; Hasanov, e al. 2002; Frontini and Sormani, 2004; 

Ribera, e al. 2008). The methods we compare in the article are modifications of the Newton’s 

method:  𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
.    (3) 

The authors of the methods have performed experiments with different functions to find the root, 

compared to the number of iterations, order of convergence, and computational 

accuracy. Experiments have been made with initial approximations for which there are not placed 

conditions. Since each of them is a modification of the Newton’s method, using different 

techniques, we examine and compare these methods by selecting the initial approximations, which 

satisfy the following conditions:  

1. We explore the functions in the interval (𝑎, 𝑏), for which 𝑓(𝑎). 𝑓(𝑏) < 0, which ensures a root in 

the corresponding interval. 

2. We require in the corresponding interval, the first and the second derivative to be continuous for 

∀𝑥 ∈ (𝑎, 𝑏): 

𝑓′(𝑥) ≠ 0           𝑎𝑛𝑑          𝑓′′(𝑥) ≠ 0. 

3. For initial approximation we use this end of the interval𝑥0 = 𝑎 𝑜𝑟 𝑥0 = 𝑏, for which 

𝑓(𝑥0). 𝑓′′(𝑥0) > 0. 

These imposed conditions, constrict the interval in which we can explore the function and limit our 

choice of initial approximation. Our aim is to analyze the behavior of methods when Newton’s type 

restrictions are imposed and to distinguish the method with the fastest convergence. With the help 

of computer program MATLAB, we calculate the order of convergence and the iterations required 

of each method for finding the root, contained in the selected interval and compare the selected 

methods. 
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Description of the algorithms compared in the article. 

Method 1. Farooq Ahmed’s method, described in article (Farooq, 2014). 

Another technique for obtaining iterative circuits is the modified homotopic perturbation technique 

used in article (Farooq, 2014) by Farooq Ahmed. He offers a class of iterative schemes with order 

of convergence 4 and higher. In our article we use one of these iterative formulas for comparison 

with the methods described below. In article (Farooq, 2014), the author considers a non-linear 

equation  

𝑓(𝑥) = 0.  (4) 

Assume that 𝑟 is a simple root for nonlinear equation (4), and 𝛾 is an initial approximation close 

enough to 𝑟. The author inserts function the auxiliary function (𝑥), such that 

 𝑓(𝑥). 𝑔(𝑥) = 0.  (5)  

He rewrites the nonlinear equation (5) as a system of coupled equations using the Taylor series 

technique. 

After a number of considerations described in (Farooq, 2014), he reaches new iterative methods 

involving the auxiliary function 𝑔(𝑥𝑛). We focus on algorithm 7, described in detail in the article. 

Function 𝑔(𝑥𝑛) is a constant. 

Algorithm 7: 

 𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

𝑥𝑛+1 = 𝑦𝑛 −
2𝑓(𝑦𝑛)

𝑓′(𝑥𝑛)
+

𝑓(𝑦𝑛).𝑓′(𝑦𝑛)

[𝑓′(𝑥𝑛)]2 −
1

2

𝑓(𝑦𝑛)2

[𝑓′(𝑥𝑛)]2 .
𝑓′′(𝑦𝑛)

𝑓′(𝑥𝑛)
 . (6) 

The next theorem proves the convergence of methods. The theorem is proved in article ( Farooq, 

2014). 
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Theorem 1.  

Assume that the function f ∶  D ⊂  R →  Rfor an openinterval in Dwith simplerootr ∈  D. Let f(x) 

be a smooth sufficiently in some neighborhood of root and then Algorithms 7 one sees that it has 

fourth-order convergence. 

Method 2. Halley’s method, described in article (Homeier, 2005). 

According to Traub (Selvanayaki, 2017), Halley’s method is one of the rediscovered and studied 

iterative method in the history of mathematics. The of Halley’s method owns cubic convergence in 

the approximation of simple zeros, but multiple zeros convergence is linear. The iteration formula 

proposed by Halley: 

𝑥𝑛+1 = 𝑥𝑛 − (
𝑓′(𝑥𝑛)

𝑓(𝑥𝑛)
−

1

2
.

𝑓′′(𝑥𝑛)

𝑓′(𝑥𝑛)
)

−1

 .   (7) 

Obreshkov issued the following modification of the method of Halley for zeros of multiplicity m. 

Cubic convergence remains with this modification, but to apply this method, we need to know the 

multiplicity m. 

𝑥𝑛+1 = 𝑥𝑛 − (
𝑚+1

2𝑚
.

𝑓′(𝑥𝑛)

𝑓(𝑥𝑛)
−

1

2
.

𝑓′′(𝑥𝑛)

𝑓′(𝑥𝑛)
)

−1

. 

Form=1 have (11) 

Another modification of the Halley’s method is the iterative method of approximation of multiple 

zeros proposed. This method has quadratic convergence and requires no prior knowledge of the 

multiplicity of zero  

𝑥𝑛+1 = 𝑥𝑛 − (
𝑓′(𝑥𝑛)

𝑓(𝑥𝑛)
−

𝑓′′(𝑥𝑛)

𝑓′(𝑥𝑛)
)

−1

 . (8) 

The next theorem proves the convergence Halley’s method with iterative scheme (8). 

Theorem 2. 

We assume that 𝑓𝜖𝐶3(𝑎, 𝑏)and there is a number𝑥 ∈ (𝑎, 𝑏), where𝑓(𝑥) = 0. If 𝑓′(𝑥) ≠ 0, then 

there is 𝛿 > 0 such that the sequence {𝑥𝑛}𝑛=0 
∞  defined by the iterative scheme (8) for 𝑛 = 0,1, … 
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will be closer tox for any initial approximation 𝑥0 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿). In addition, if x is a simple 

root, then {𝑥𝑛+1} there will be a order of convergence 𝑅 = 3, i. e 

lim
𝑛→∞

|𝑥−𝑥𝑛+1|

|𝑥−𝑥𝑛|3 = lim
𝑛→∞

|𝐸𝑛+1|

|𝐸𝑛|3 = 𝐴. 

Method 3.  Homeier‘s method, described in articles (Homeier, 2004; Selvanayaki, 2017). 

The idea of Homeier again based on Newton’s method, but instead of the function 𝑦 = 𝑓(𝑥) the 

reverse function 𝑥(𝑦) is used 𝑥(𝑦) = 𝑥(𝑦𝑛) + ∫ 𝑥′(𝜂) 𝑑𝜂
𝑦

𝑦𝑛
. 

Thus, a class of Newton’s cubic methods is obtained, the most efficient of which is: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

2
. (

1

𝑓′(𝑥𝑛)
+

1

𝑓′(𝑥𝑛−
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
)
) . (9) 

The next theorem proves the convergence of the methods. The theorem is prooved in (Selvanayaki, 

2017). 

Theorem 3. 

Let ωγ and τγ  for  γ =1. . ., m be the weights and abscissas, resp., of an m-point interpolar 

quadrature for the interval (0, 1), that is at least of order1. Letf ∶  R →  Rbe a smooth function witha 

simple zerox∗and abbreviate the scaled derivatives off at the zero by 

Ck =
fk(x∗)

f′(x∗)
. 

Then, the iterative scheme 

xn+1 = xn − f(xn) ∑
ωγ

f ′ (xn −
τγf(xn)

f ′(xn)
)

m

γ=1

 

converges cubically to x∗ in a neighborhood of x∗. The errors εn =  xn– x∗obey the order relation  

εn+1 =
K

3!
εn

3 + O(εn
4) за εn → 0 . 

Here K is the constant 

K = 3C2
2 − C3 + 3 ∑ ωγτγ

2(C3 − 2C2
2)m

γ=1 . 
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Form = 2, ω1 = ω2 =
1

2
,  τ1 = 1 − τ2 = 0, we obtain scheme (9) with  en+1 =

C3

12
en

3 + O(en
4). 

Method 4.  Kou’s method, described in article (Chun, 2007). 

In this method, the Newton’s integral is solved within new boundaries 

𝑓(𝑥) = 𝑓(𝑦𝑛) + ∫ 𝑓′(𝑡) 𝑑𝑡
𝑥

𝑦𝑛
, 

where 

𝑦𝑛 = 𝑥𝑛 +
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. 

The rule for the middle point is used to solve the integral 

∫ 𝑓′(𝑡) 𝑑𝑡
𝑥

𝑦𝑛
= (𝑥 − 𝑦𝑛). 𝑓′ (

𝑥+𝑦𝑛

2
). 

And for𝑓(𝑥) = 0 a new method is proposed  

𝑥𝑛+1 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑥𝑛+1
∗ +𝑦𝑛)

2

 , 

where 

𝑥𝑛+1
∗ = 𝑦𝑛 −

𝑓(𝑦𝑛)

𝑓′(𝑥𝑛)
 

𝑦𝑛 = 𝑥𝑛 +
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

And then, 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛+

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
)−𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
.  (10) 

The next theorem proves the convergence of the methods. The theorem is proved in (Chun, 2007). 

Theorem 4. 

Assume that the function  𝑓 ∶  𝐷 ⊂  𝑅 →  𝑅 has a simple root 𝑥∗ ∈  𝐷, where 𝐷 is an open interval. 

If 𝑓(𝑥) has first, second and third derivatives in the interval 𝐷, then the method defined by (10) 

converges cubically to 𝑥∗ in a neighborhood of 𝑥∗. 

The acceptable error is: 
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𝑒𝑛+1 =
1

2
.

𝑓′′(𝑥𝑛)2

𝑓′(𝑥𝑛)2 . 𝑒𝑛
3 −

1

3
.

𝑓(3)(𝑥𝑛)

𝑓′(𝑥𝑛)
. 𝑒𝑛

3 + 𝑂(𝑒𝑛
4). 

Numerical experiments. 

In tables 1 to 5 the experiments made by the above methods are presented. We stop our attention at 

five functions, that have continuous first and second derivative to the corresponding interval (𝑎, 𝑏), 

in which we look for the root. The initial approximation 𝑥0,  is the end of interval (𝑎, 𝑏), for 

which𝑓(𝑥0). 𝑓′′(𝑥0) > 0. 

We use the following test functions and display the computed results: 

𝑓1(𝑥) = 0.5. 𝑒𝑥 − 5𝑥 + 2,   𝑥𝑛 =  3.401795803𝑒 + 00 

𝑓2(𝑥) = 𝑒𝑥 − 4𝑥2, 𝑥𝑛 =   4.306584𝑒 + 00 

𝑓3(𝑥) = 𝑥2 − 𝑒−𝑥 − 3𝑥 + 2 ,    𝑥𝑛 = −2.99223𝑒 + 00 

𝑓4(𝑥) = 𝑥. exp(𝑥) − 1 ,  𝑥𝑛 =  567.143290𝑒 − 003 

𝑓5(𝑥) = (𝑥 + 2)𝑒𝑥 − 1 ,   𝑥𝑛 =   −4.428544𝑒 − 01 

All calculations were made using a computer program Matlab 7.6.0. For the stop criterion, we use 

the difference between the last two approximations 𝛿  to be less than tol = 10e-15. 

As convergence criterion used 2 conditions: 

• The absolute value of the function from the approximated root found must be less than the 

specified accuracy |𝑓(𝑥𝑛)| < 𝑡𝑜𝑙. 

• The absolute value of the difference between the latter and the penultimate approximation – 

 |𝑥𝑛 − 𝑥𝑛−1| < 𝑡𝑜𝑙. 

Definition 1. 

Letα be a root of the function f(x) and suppose that xn−1, xn,  xn+1are three consecutive iterations 

closer to the root α. Then the computational order of convergenceρ  can be computed using the 

formula: 
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𝜌 =
ln(|𝑥𝑛+1−𝛼|/|𝑥𝑛−𝛼|)

ln(|𝑥𝑛−𝛼|/|𝑥𝑛−1−𝛼|)
. 

Table Description. 

We will use the following labels for the methods with which we  do experiments: 

M1 – Algorithm 7 (6) described in ( Farooq, 2014). 

Halley – Halley’s method (7) described in (Homeier, 2005). 

Homeier – Homeier’s method (7) described in (Weerakoon and Fernando, 2000; Noor, 2010). 

Kou – Kou’s method (9) described in (Chun, 2007). 

1. It–number of iterations. 

2. |𝑓(𝑥𝑛)| – the absolute value of the function in a point 𝑥 = 𝑥𝑛- last approximation. 

3.  𝛿 – difference between the last two approximations. 

4. 𝜌 – the order of convergence. 

Function 1. We consider the nonlinear equation 𝑓1(𝑥) = 0.5. 𝑒𝑥 − 5𝑥 + 2 in the interval, where the 

root is 𝑥𝑛 =  3.401795803𝑒 + 00.  We scroll the initial approximations to the right of the root, 

where the graph of the function and of its second derivative pass over the Ox axis and accept a 

positive sign. 

Table 1. 

𝑓1(𝑥) = 0.5. 𝑒𝑥 − 5𝑥 + 2       𝑥𝑛 =  3.401795803𝑒 + 00             10e-15 

  

 

it |𝑓(𝑥𝑛)| 𝛿 𝜌 

Homeier 𝑥0 = 5 4 3.55e-15 8.92e-08 3.05e+00 

Kou 5 0.00e+00 7.11e-15 3.00e+00 

Halley 4 0.00e+00 4.29e-07 2.90e+00 

M2 4 0.00e+00 5.77e-07 3.59e+00 

      

Homeier 𝑥0 = 7 5 3.55e-15 2.03e-06 3.05e+00 

Kou 6 0.00e+00 5.34e-11 2.97e+00 

Halley 5 3.55e-15 2.48e-06 2.86e+00 

M2  5 0.00e+00 1.27e-04 3.21e+00 
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Homeier 
 

𝑥0 = 8.7  

6 0.00e+00 6.66e-07 3.05e+00 

Kou 7 0.00e+00 6.60e-11 2.97e+00 

Halley 6 0.00e+00 2.97e-07 2.91e+00 

M2  7 0.00e+00 8.44e-15 3.94e+00 

      

Homeier 

𝑥0 = 12 

8 -3.55e-15 1.01e-08 3.05e+00 

Kou 9 0.00e+00 8.77e-12 2.98e+00 

Halley 8 0.00e+00 2.21e-10 2.97e+00 

M2  9 0.00e+00 3.95e-14 3.93e+00 

With the first two approximations, all methods make the same number of iterations, except the Kou 

method. By moving away from the root, the Kou and Homeier methods are distinguished by one 

iteration less than the other two. 

Function 2: The graph of this feature shows that it has three real roots. Due to the constraints 

imposed on the initial approximation, we  look for the root 𝑥𝑛 =   4.306584𝑒 + 00, since on the 

right along the Ox axis it is not limited by the first and the second derivative and the function and 

itssecond  derivative have the same sign. 

𝑓2(𝑥) = 𝑒𝑥 − 4𝑥2 in interval (3.5, 14), in which we look for root. 

Table 2. 

𝑓2(𝑥) = 𝑒𝑥 − 4𝑥2   𝑥𝑛 =   4.306584𝑒 + 00                      10e-15 

  

 

it |𝑓(𝑥𝑛)| 𝛿 𝜌 

Homeier 

𝑥0 = 11.9 

9 1.42e-14 0.00e+00 Inf 

Kou 9 1.42e-14 0.00e+00 Inf 

Halley 8 1.42e-14 5.33e-15 3.00e+00 

M2  9 1.42e-14 0.00e+00 Inf 

      

Homeier 

𝑥0 = 13.9 

10 1.42e-14 0.00e+00 Inf 

Kou 10 -1.42e-14 3.55e-15 2.99e+00 

Halley 9 1.42e-14 5.33e-15 3.01e+00 

M2  10 1.42e-14 0.00e+00 Inf 

With this feature, Halley's method makes an iteration less than the others. It requires calculating a 

second derivative, but at approximations that are far from the root it also faster than the others. 

Function 3. We consider the nonlinear equation 𝑓3(𝑥) = 𝑥2 − 𝑒−𝑥 − 3𝑥 + 2 in interval (-7, -2), in 

which we look for root 𝑥𝑛 = −2.99223𝑒 + 00. 
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The function has three real roots, one of which is 𝑥𝑛 = −2.99223𝑒 + 00. We will examine the 

function within the range (-7, -2), where the function and the second derivative of function pass 

under the axis Ох, i.e they have a negative sign that satisfies the condition 𝑓(𝑥0). 𝑓′′(𝑥0) > 0 

Table 3. 

𝑓3(𝑥) = 𝑥2 − 𝑒−𝑥 − 3𝑥 + 2            𝑥𝑛 = −2.99223𝑒 + 00         10e-15 

  

 

𝑥0 = −6.5 

it |𝑓(𝑥𝑛)| 𝛿 𝜌 

Homeier 5 1.78e-15 4.61e-06 3.03e+00 

Kou 6 1.78e-15 1.79e-09 2.95e+00 

Halley 5 1.78e-15 6.86e-06 2.84e+00 

M2  6 1.78e-15 1.02e-14 3.94e+00 

      

Homeier 

𝑥0 = −6.6 

5 1.78e-15 1.02e-05 3.02e+00 

Kou 6 1.78e-15 1.79e-09 2.95e+00 

Halley 5 8.88e-15 1.38e-05 2.82e+00 

M2  6 1.78e-15 1.57e-13 3.92e+00 

Function 4. We consider the nonlinear equation 𝑓4(𝑥) = 𝑥. exp (𝑥) − 1, which has one real root 

𝑥𝑛 =  567.143290𝑒 − 003. To the left of the root, the first and the second derivative of the 

function are reset, so we choose to examine the function in the range(−1, +∞). Table 4 presents the 

results in a function study 𝑓5, with three initial approximations selected to the right of the root to 

meet the condition  𝑓(𝑥0). 𝑓′′(𝑥0) > 0. 

Table 4. 

𝑓4(𝑥) = 𝑥. exp(𝑥) − 1               𝑥𝑛 =  567.143290𝑒 − 003          10e-15 

  it |𝑓(𝑥𝑛)| 𝛿 𝜌 

Homeier  

 

𝑥0 = 2 

4 0.00e+00 4.24e-07 3.03e+00 

Kou 5 0.00e+00 1.63e-14 2.99e+00 

Halley 4 0.00e+00 5.24e-07 2.94e+00 

M2 4 0.00e+00 2.36e-06 3.56e+00 

      

Homeier  

 

𝑥0 =5 

6 0.00e+00 1.28e-06 3.03e+00 

Kou 7 2.22e-16 5.73e-11 2.98e+00 

Halley 6 0.00e+00 2.50e-07 2.95e+00 

M2 7 0.00e+00 2.99e-14 3.94e+00 
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With approximation 𝑥0 = 2 again the Kou method has more iterations. The other methods make 4 

iterations. With the next approximation 𝑥0 =5, of the methods in which no second derivative is 

calculated, the Homeier method makes an iteration less than the Kou method, and from the methods 

requiring calculation of a second derivative, the Halley method, again has a smaller number of 

iterations (Homeier, 2004). 

Function 5. We consider the nonlinear equation 𝑓5(𝑥) = (𝑥 + 2)𝑒𝑥 − 1 in nterval (-1, 6), in which 

the root 𝑥𝑛 =   −4.428544𝑒 − 01 is sought. 

The function is reset to the point 𝑥𝑛 =   −4.428544𝑒 − 01. The graphs of the first and the second 

derivatives go to the left of the root near the Ox. We examine the function in an interval (-1, 6) in 

which the two derivatives are not reset and for any point in this interval  𝑓(𝑥0). 𝑓′′(𝑥0) > 0 is in 

effect.   

Table 5. 

𝑓5(𝑥) = (𝑥 + 2)𝑒𝑥 − 1    𝑥𝑛 =   −4.428544𝑒 − 01                    10e-15 

  

𝑥0 = 3.1 

it |𝑓(𝑥𝑛)| 𝛿 𝜌 

Homeier 6 0.00e+00 1.05e-14 3.01e+00 

Kou 6 0.00e+00 1.12e-09 2.98e+00 

Halley 5 0.00e+00 1.86e-06 2.95e+00 

M2  6 0.00e+00 4.25e-12 3.91e+00 

      

Homeier 

𝑥0 = 4.9 

7 0.00e+00 6.54e-13 3.01e+00 

Kou 7 0.00e+00 1.05e-07 2.95e+00 

Halley 6 0.00e+00 9.58e-08 2.97e+00 

M2  7 0.00e+00 1.93e-08 3.77e+00 

      

Homeier 

𝑥0 = 6 

7 0.00e+00 2.29e-06 3.03e+00 

Kou 8 0.00e+00 3.04e-10 2.98e+00 

Halley 7 0.00e+00 5.16e-09 2.98e+00 

M2  8 0.00e+00 1.95e-11 3.89e+00 

With the first two approximations, Halley's method makes the least number of iterations. The 

Homeier’s method is better than all the methods that do not require calculation of the second 
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derivative. When comparing the other two methods that require second derivate calculation, 

Halley’s method is better. 

CONCLUSIONS. 

In the present article, we review and compare iterative methods with order of convergence 3 and 4. 

Two of them require calculation of a second derivative. We experiment with 5 functions to find a 

real root. For initial approximations, we chose points in a space that meets Newton’s terms.  

When comparing the two methods that do not require calculation of a second derivative, the 

experiments show that the Homeier method makes less iterations than the Kou method, and when 

comparing the other two methods, Halley's method is faster than the method proposed by Farooq in 

article (Farooq, 2014; Parandjani et al, 2014). 
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