
1

Revista Dilemas Contemporáneos: Educación, Política y Valores.

http://www.dilemascontemporaneoseducacionpoliticayvalores.com/

Año: VI Número: Edición Especial Artículo no.:12 Período: Marzo, 2019.

TÍTULO: Modelado de estructuras matemáticas y programación orientada a objetos.

AUTORES:

1. Т.Yu Gainutdinova.

2. M.Yu Denisova.

3. L.V. Riazanova.

4. Z.F. Shakirova.

5. O.A. Shirokova.

RESUMEN: El artículo contiene los problemas de la enseñanza de una programación orientada

a objetos para los estudiantes que estudian en la Facultad de Matemáticas con la especialidad en

pedagogía. La programación orientada a objetos permite aprovechar el enfoque orientado a

objetos no solo en las fases de diseño y desarrollo de los sistemas de software, sino también en

las etapas de su implementación, prueba y mantenimiento. El diseño de proyectos orientados a

objetos de modelado de sistemas y estructuras contribuye a la formación de las habilidades de

los estudiantes para formalizar la tarea, destacando las abstracciones y objetos del dominio del

tema, estructurándolos e implementándolos.

PALABRAS CLAVES: programación orientada a objetos, diseño orientado a objetos,

componentes visuales de desarrollo de software, clases, objetos.

http://www.dilemascontemporaneoseducacionpoliticayvalores.com/
http://www.dilemascontemporaneoseducacionpoliticayvalores.com/
http://www.dilemascontemporaneoseducacionpoliticayvalores.com/
http://www.dilemascontemporaneoseducacionpoliticayvalores.com/

TITLE: Modelling mathematical structures and object-oriented programming.

AUTHORS:

1. Т. Yu Gainutdinova.

2. M. Yu Denisova.

3. L.V. Riazanova.

4. Z.F. Shakirova.

5. O.A. Shirokova.

ABSTRACT: The article contains the problems of teaching an object-oriented programming for

students studying at the Mathematics Faculty with the pedagogy major. Object-oriented

programming allows to take an advantage of the object-oriented approach not only at design and

developing phases of software systems, but also at the stages of their implementation, testing and

maintenance. The object-oriented projects design of modeling systems and structures contributes to

the formation of students' skills in formalizing the task, highlighting the abstractions and objects of

the subject domain, structuring and implementing them.

KEY WORDS: object-oriented programming, object-oriented design, software development visual

components, classes, objects.

INTRODUCTION.

Object-oriented programming (OOP) is the basic part of the curricula for students studying at the

Mathematics Faculty with Pedagogy major (Barkov, 2009; Gainutdinova and Shirokova, 2016;

Shirokova, 2015).

The use of the object-oriented approach creates students’ object thinking. However, here are arisen

a number of problems (Pavlovskaya, 2003). These problems are associated with the complexity of

the studied subject area, inability to identify the necessary classes and objects in it, their

3

connections and structures (Shirokova, 2015). There are also the following methodological

problems:

− Training of software design in school and in the first year of the university is based on the

principles of structural programming, which uses functional decomposition of tasks and does not

include an object-oriented approach. These types of training develop a stereotype of procedural

thinking. A complete reorganization of system thinking is necessary while using object

decomposition of tasks. The best methodical solution of this problem is to study object-oriented

programming in parallel with studying the structural at the very beginning of the learning

process: both in school and in the first year of the university.

At the present stage, object-oriented programming (Booch, 2008; Booch, 2007; Yuvarajan, et. al.

2018) is focused on the designing of complex programs; therefore, the developers of software tools,

as a rule, publish the implementation of their software in the form of a «black box». Detailed

description of the stages of object-oriented analysis, design, modeling and developing of this project

is hidden, user have only the external logic of the software. Therefore, there are no good examples

of implementing object-oriented software with explanations on the choice of the solutions.

In relation to the above mentioned, methodical development of examples of the implementation of

object-oriented projects (Barkov, 2009; Gainutdinova and Shirokova, 2016; Shirokova, 2015;

Vikentieva and Polyakova, 2012) in various programming systems by teachers is necessary and

important, as this is the basis for the teacher to transfer his experience to students.

DEVELOPMENT.

Materials and methods of the research.

Problem Statement.

The main building blocks of object-oriented methodology of program analysis and design are

classes and objects (3,10). Classes are abstractions of reality.

During the object-oriented programming course at the Faculty of Mathematics, the main

methodological way of practical classes is to inculcate the basic skills of developing object-oriented

projects. It should be noted that the basis of these projects should be the classes and objects, the

prototypes of which are mathematical structures. The course provides students with creating

projects related, for example, to the implementation of classes of mathematical abstractions and

structures.

The article proposes the development of projects for implementing the class of a mathematical

object «complex number» in various systems of object-oriented programming: C ++ (Booch, 2007;

Pavlovskaya, 2003; Pobegailo, 2006; Yuvarajan, et al. 2018), Delphi (Darakhvelidze and Markov,

2005; Gainutdinova and Shirokova, 2016; Shirokova, 2015), Python (Beazley, 2016; Cox and

Raspberry, 2014; Gurikov, 2017; Suzie, 2015; Tosi, 2009; Vikentieva and Polyakova, 2012).

The developing of the projects considers the following issues of object-oriented analysis:

− indication of the complexity of the problem

− object-oriented decomposition of the subject area;

− object-oriented analysis and object-oriented design;

− use of the universal modeling language UML for object-oriented modeling;

− implementation of object-oriented technology in a specific programming system;

− implementation of the structure of the object superstructure of the programming system, using

libraries of visual components;

− implementation of the most important classes and their interaction with the operating system.

Methodology.

The developing of the projects contains the concept of the life cycle of a software product, inclosing

the processes, actions and tasks that must be performed when the projects are created (Ivanova,

2011). In the process of object-oriented analysis an enormous amount of attention is given to the

5

defining and describing objects in terms of the subject domain. It is proposed to use the UML

system modeling language to develop an object-oriented domain model (Quatrani, 2002). For this

purpose, analysis and design models are used using the basic types of diagrams. Throughout the

process of object-oriented design logical program objects are defined as a future-implemented in a

specific programming system. The resulting program objects are classes and these objects include

attributes, methods, and properties. An important point in the design is a separate description of the

structure and implementation of classes.

The main task in the development of an object-oriented project is to code using a library of visual

components. Moreover, the student must know the hierarchy of components that describes their

interaction; the environment of the program in which the components work; interaction of the

program with the operating system.

The development of projects for implementing a class of complex numbers in various object-

oriented environments C ++, Delphi, Python give a teacher an opportunity to solve a number of

methodological tasks:

− conducting object-oriented decomposition of the subject area;

− learning the UML language to build models of analysis and design using the main types of

diagrams;

− identifying logical program objects that will be implemented in various programming systems;

− analyzing the programming systems, implementing the complex number class and program

structure, using the features of the specific environment;

− creating object-oriented projects using the features of libraries of visual components of specific

environments.

An important methodological aspect is that each next project in the new software system is based

on the knowledge gained in the creation of previous projects. Development of object-oriented

models using the UML language, project module codes, using of right rules of naming of identifiers

and other methodical approaches significantly improves continuity during moving to the creation of

a project in a new software environment. The learner during moving to a new project is often forced

to implement changes in existing programs, that’s why the awareness of the need to take care of the

modifiability of the program is quickly instilled.

Practical lessons of the course of object-oriented programming are aimed at implementing the

stages of analysis, design, modeling and programming of a given project. Now we should move to

the following project: create a class of complex numbers whose fields are the real and imaginary

parts of the number; class methods perform actions on complex numbers. Implement the

capabilities of the class to work with the object, calculating with a given accuracy, using the Taylor

series. Develop a project in object-oriented environments: C ++, Delphi, Python.

Parts of the main modules describing the structure of the class and its methods in the C ++ system

are showing here.

The structure of the class is described in the header file Complex.h

ref class Complex,

private:

 Double x, y;

public:

 Complex ();

 Complex (Double x, Double y);

 void Sum (Complex ^A, Complex ^B);

 void Sub (Complex ^A, Complex ^B);

7

 void Multi (Complex ^A, Complex ^B);

 void Div (Complex ^A, Complex ^B);

 void TgA (Double eps);

 void TgB (Double eps);

 event Result^ ChangeValueInTable;

Descriptions of class methods are contained in the implementation file Complex.cpp (here's a part

of the Sum method description):

void Complex: Sum (Complex ^A, Complex ^B)

 this->x = A->x + B->x;

 this->y = A->y + B->y;

 ChangeValueInTable(x, y);

The window of the visual project in C ++:

Figure 1. Visual project window.

Parts of the module describing the structure of the class and its methods in Delphi are showing here.

Type Complex=class

re,im:real;

procedure Impre (x:real);

procedure Impim (y:real);

function Outre:real;

function Outim:real;

procedure Sum (z:Complex);

procedure Sub (z:Complex);

procedure Multi (z:Complex);

procedure Div (z:Complex);

procedure TgA;

procedure TgB;

end;

Description of the Sum method in Delphi:

procedure Complex.Sum;

begin

 re:=re+z.re;

 im:=im+z.im;

end;

Parts of the module describing the structure of the class and the Sum method in Python are showing

here:

class TComplex=

def SetReal(self,x):

 self.Real=x

def GetReal(self):

 return self.Real

def SetIm(self,y):

im:=im+z.im
im:=im+z.im

9

 self.Im=x

def GetIm(self):

 return self.Im

……………..

def Sum(self,z):

 self.Real +=z.Real

 self.Im +=z.Im

………………

The use of rules for naming identifiers and similar methodical methods significantly increases

continuity. Easy understanding of the program is an important practical principle. Using the naming

rules of identifiers incorporated in the programming system leads to the fact that as a result of using

standard names (for example, buttons "Button", labels "Label", etc.), the assignment of these

components in this program can be determined only after its careful investigation. Therefore,

identifiers that denote the names of components, methods, fields, etc., must carry a meaning.

High-quality program should not only solve an applied problem, but be easily read by any user,

because in practice, often a program developed by one programmer is passed on to another

specialist to maintenance and develop it. Thus, the object-oriented style of programming makes it

possible to take advantage of the object-oriented approach not only at the stages of designing and

constructing software systems, but also at the stages of their implementation, testing and

maintenance.

Results.

The task of teaching students to think objectively is complex. Object-oriented methodology is based

on the concepts of classes and objects. Classes form the structure of data and actions and use this

information for the construction of objects. From one class can be built more than one object at the

same time, each of them will be independent of the others. The creation of projects related to the

implementation of classes of mathematical abstractions forms object thinking at students of the

mathematical faculty.

The development of object-oriented projects includes the environment and the design object (the

problems of creating software systems, the features of a complex system, the project model, the life

cycle of the software product), the design of software products (the meaning of design, the

importance of model building, elements of software design, object-oriented analysis, design and

programming), the principles and tools of object-oriented analysis (classification and object-

oriented programming, the difficulties of classification, object-oriented analysis), the principles and

tools of object-oriented designing (abstraction, encapsulation, modularity, hierarchy, typification),

the advantages of the object model.

The presented methodical approach of the implementation of classes of mathematical abstractions

and structures allows: to conduct object-oriented decomposition of the subject area (mathematical

object - complex number); to learn the UML language for building a project model; to define

logical program objects that will be implemented in various programming systems (C ++, Delphi,

Python); to analyze the systems of programming, to realize the class of complex numbers and the

structure of the program, using the features of the concrete environment; create visual projects.

CONCLUSIONS.

The peculiarities of studying the course of object-oriented programming technology are considered

in the article. Object-oriented programming is one of the most effective approaches to modern

programming. The procedural programming principle, which was used by programmers earlier, has

become obsolete over time, causing many problems for developers. These problems are solved by

object-oriented programming, which allows you to combine data and methods related to one entity,

11

and work with them as one. Therefore, object-oriented programming and object-oriented

programming technology have already become an integral part of university program.

Object-oriented programming, being a largely developed discipline, includes both theoretical

justifications and a rich set of professional practices and recommendations (Barkov, 2009). To

improve the quality of teaching the "Programming" course, great attention must be paid to the

creation of object-oriented projects of mathematical structures in various environments.

The creation of object-oriented projects of modeling systems and structures contributes to the

formation at students of skills of formalization of the task, highlighting the abstractions and objects

of the subject area, structuring and implementing them. Students develop the skills to apply

software development models when creating software products, and also apply software modeling

tools.

Acknowledgements.

The work is performed according to the Russian Government Program of Competitive Growth of

Kazan Federal University.

BIBLIOGRAPHIC REFERENCES.

1. Barkov I.A. (2009). Teaching the discipline "Object-Oriented Programming" //Educational

Technologies and Society, pp. 494-516.

2. Beazley, D. (2016). Python Programming Language Publisher: Addison-Wesley Professional.

– ISBN: 9780134217314

3. Booch, G. (2007). Object-Oriented Analysis and Design with Applications in C++. Addison-

Wesley. – ISBN 0-201-89551-X

4. Booch, G. (2008). Object-Oriented Analysis and Design with Applications (3rd Edition).

Trans. with English – М.: «Williams». – 720 p. – ISBN 978-5-8459-1401-9

https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/020189551X
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/020189551X
https://ru.wikipedia.org/w/index.php?title=%D0%92%D0%B8%D0%BB%D1%8C%D1%8F%D0%BC%D1%81_(%D0%B8%D0%B7%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE)&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=%D0%92%D0%B8%D0%BB%D1%8C%D1%8F%D0%BC%D1%81_(%D0%B8%D0%B7%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE)&action=edit&redlink=1
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/9785845914019
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/9785845914019

5. Cox, T. Raspberry Pi. (2014). Cookbook for Python Programmers. – Birmingham: Packt

Publishing. – 402 p.

6. Darakhvelidze, P.G., Markov E.P. (2005). Programming in Delphi 7.– St. Petersburg: BHV –

Petersburg, – 784 p.

7. Gainutdinova, T.Yu., Shirokova, O.A. (2016). Features of professional training in

programming the future teacher of computer science. Program and theses of the II

International Forum on Teacher Education (MFSP-2016). – Kazan: Kazan University. –

pp. 231-232.

8. Gurikov, S.R. (2017). Fundamentals of Algorithmization and Programming in Python:

Textbook. FORUM: INFRA-M. – 343 p.

9. Ivanova G.S. (2011). Programming technology: a textbook. /G.S. Ivanova – M., Knorus. –

336 p.

10. Pavlovskaya, T.A. (2003). C/C++. Structural programming: Workshop /T.A. Pavlovskaya,

Yu.A. Shchupak – SPb: Piter– 240 p.

11. Pobegailo, A.P. (2006). C / C ++ for the student: Textbook /А.П. Pobegailo – St. Petersburg:

BHV–Petersburg. – 528 p. – ISBN 5-94157-647-1

12. Quatrani, T. (2002). Visual Modeling with Rational Rose 2002 and UML (3rd Edition). –

Boston– 134 p. – ISBN: 0201729326

13. Shirokova, O.A. (2015). Object-oriented programming with creation of classes for objects of

type «massive» and «matrix» // Object systems – 2015 (Winter session): Proceedings of XI

International Theoretical and Practical Conference (Rostov-on-Don, 10-12 December, 2015) /

Edited by Pavel P. Oleynik. – Russia, Rostov-on-Don: SI (b) SRSPU (NPI). – pp. 15-23.

14. Suzie, R.A. (2015). Python: Manual, R.A. Susie. – St. Petersburg: BHV-Petersburg, 2015. –

759 p. – ISBN 978-5-9775-1417-0

13

15. Tosi, S. (2009). Matplotlib for Python Developers. – Birmingham: Packt Publishing.

16. Vikentieva, O.L., Polyakova O.A. (2012). Project-programming and C++ programming:

object-oriented programming. O.L. Vikentieva, O.A. Polyakova. International Journal of

Applied and Fundamental Research, No.6. – pp. 56-57.

17. Yuvarajan, D., Babu, M. D., BeemKumar, N., & Kishore, P. A. (2018). Experimental

investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel

in a diesel engine. Atmospheric Pollution Research, 9(1), 47-52.

DATA OF THE AUTHORS.

1. Т.Yu. Gainutdinova. Kazan Federal University.

2. M.Yu. Denisova. Kazan Federal University.

3. L.V. Riazanova. Kazan Federal University.

4. Z.F. Shakirova. Kazan Federal University.

5. O.A. Shirokova. Kazan Federal University.

RECIBIDO: 2 de febrero del 2019. APROBADO: 13 de febrero del 2019.

