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ABSTRACT: Modern information communication systems require not only the development of 

new methods and algorithms for decoding existing redundant codes, but also the creation of new 

classes of error-correcting codes. This article examines a lexicographic approach (including its 

modifications) to the decoding of polar codes. Results shows that a comparison of the energy gain 

between the proposed lexicographical approach to decoding polar codes and the classical decoding 

schemes have been carried out. The proposed approach showed the best results in terms of 

correction capabilities in the range of low signal-to-noise ratios.  
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INTRODUCTION.  

Reasonably increasing requirements for management efficiency of modern and prospective 

management control systems (MCS) dictate the need for short-cycle management. Therefore, to 

protect information against errors in forward and reverse links of a MCS, it is expedient to use short 

error-correcting codes. Reducing the length of code sequences for given reliability requirements 

leads to the need for flexible synthesis of code and algorithmic methods for error correction based 
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on applying soft decoding methods in combination with iterative data conversion. To a certain 

extent, this requirement is met by relatively new designs based on polar codes (PC). Application of 

the PC concept is stipulated by the following positive features of this class of block codes (Arikan, 

2009; Arikan & Telatar, 2009; Gladkikh et al, 2016):  

1. Reaching an asymptotically possible capacity for the binary channel; 

2. An opportunity to freely select the required code distance within the Hamming metric due to the 

Bhattacharyya distance (BhD); 

3. An acceptable level of error-correcting capability. 

The concept of forming a PC is based on Arikan's kernel, which is a matrix .  defines 

its m-th Kronecker index, where . To obtain the corresponding matrix, it is necessary to 

introduce a permutation matrix  based on BhD, which is defined as: 

 

where , , , and  are the components of the set with only even and 

odd numbers respectively, starting from zero, and  is the length of code combination. It is 

worth noting that the sets  are equipotent. To obtain the system of equations (1) for 

different values of  , it is necessary to use such elements of the specified sets that are at the same 

positions. While the resulting generator matrix   is written as follows:   (Arikan, 

2009; Arikan, 2011; Ganin et al, 2017). 

To perform a polarization operation, it is necessary to convert the scalar channel into a vector 

channel, identifying it with the function of the conditional probability density of the output symbol. 

This is achieved by recursively creating copies of the binary-symmetric channel, as shown in Figure 
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1. The scheme for constructing such a system is a multiple of degree 2, starting from zero, and its 

general form is formulated as follows (Arikan, 2009): 

 

where  are the symbols formed by the source of information, and  are the symbols received 

from the communication channel. 

Figure 1 – Recursive method for forming a code vector. 

 

The polarization effect is achieved by applying a non-degenerate conversion of  into data. 

Thus, the polarizing conversion of the channel  is based on the polarization of 

vector channels of smaller dimension , . This decomposition for the 

conditional probability densities  is expressed as [1, 4, 7, 8]. 
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(3) 

where  and  denote the components of the vector only with even and odd numbers, 

respectively. When  , the channels  will be either completely noiseless or completely 

unreliable. In this regard, information symbols transmitted through the channels with a low level 

of reliability, can be considered as ever fixed (frozen) (Gladkikh et al, 2016; Ganin et al, 2017). 

The general expression for finding the output code vector  is defined by the following relation: 

 

where  and  are reliable and unreliable symbols (positions of the code vector, which are 

assigned a value of 0, respectively. It is worth noting that the concept of unreliable symbols 

(symbols that are assigned a value of 0) is inextricably linked to the generator matrix of the code in 

question. In fact, unreliable symbols correspond to «weak» rows of the generating matrix (rows 

with a minimum weight) (Gladkikh et al, 2013; Ganin et al, 2017). 

Consider a PC with lengths of . The generator matrix without removing the unreliable 

channels («weak» rows of the generating matrix) for the specified code is formulated as  

(its m-the Kronecker index is written as , where ) and equal to (Gladkikh et al, 2016; 

Namestnikov & Chilikhin, 2017). 
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where  is the Arikan's kernel (matrix). After a structural analysis of the code, it can 

be noted that the number of permutations varies in the range of , and the number of 

calculation levels – , respectively. Permutation is such a conversion of a sequence of 

bits received from the output of an information source, in which the subsequent step differs from 

the previous one by the magnitude of the column of the original generator matrix. In this case, there 

is a redistribution of the erasure probability (uncertainty) at each calculation level, which follows 

the permutation phase. The functional scheme of forming a code vector is shown in Fig. 2 

(Gladkikh et al, 2016; Namestnikov & Chilikhin, 2017). 

Figure 2 – Functional scheme of forming a PC vector with a length of N = 8. 
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The symbol  denotes the calculation of type, and  is a calculation of .type. It is 

worth noting that evaluation of unreliability (degree of «frozenness») of a symbol or a row of the 

generator matrix (communication channel) occurs at the stage of code vector formation, where the 

system perceives a sequence of symbols  as the symbols, obtained from the 

communication channel, the erasure probability of which (uncertainty) is equal to . The arrow 

shows the direction of the calculations (Gladkikh et al, 2016; Namestnikov & Chilikhin, 2017). 

For the considered example, the Bhd distribution is obtained by applying expression, as presented 

in Table 1. 

Table 1 – Bhd distribution for a PC with a length of N=8 

Parameter         

Value 0.9961 0.8789 0.8086 0.3134 0.6836 0.1914 0.1211 0.0039 

The unreliable (frozen) symbols in the rows of the generator matrix are to be be struck out. It has 

been shown that if Bhd , the channel is considered unreliable (frozen or weak row of the 

generator matrix is crossed out and does not affect the formation of the code vector, i.e., the 

specified components of the sequence  are assigned a value of 0. Based on the ranking 

of the rows of the generator matrix (channels), the encoding rate can be flexibly controlled. Thus, 

each row of the generator matrix has its own rank based on Bhd (Gladkikh et al, 2016; 

Namestnikov & Chilikhin, 2017). 

Accordingly, for the PC (8.4) 
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Application of PCs in information exchange systems is an innovative area that contributes to 

increasing capacity of the communication channel by representing a binary symmetric channel in 

the form of a system of interconnected vector channels with given logical connections.  

The PCs formation technology is based on the complete exclusion from the analysis of the received 

sequence of those channels in which the transmission of bits is notoriously unreliable. Capacity of 

unreliable channels is considered to be equal to zero (such channels are called «frozen»), and 

information recovery is carried based on a complex of received data from reliable channels. Thus, 

one can substantiate the advisability of introducing PC in design of new and modernization of 

existing data transmission systems (Arikan, 2009; Gladkikh et al, 2016; Korada, 2009; Ganin et al, 

2017). 

DEVELOPMENT. 

Materials and methods 

Equivalence of linear block (N, k, d) codes significantly extends the scope of application of 

redundant codes. It is known that the arrangement of the columns in the generator matrix  of  

dimension is unessential, and then there are various options for choosing a basis for the same code. 

Consequently, various options of the matrix formation  will result in various vectors of the 

modular code representation. Modular representation of linear block codes allows obtaining the 

weighted structure of the code and to show that in the case of representation of all code 

combinations in the form of  matrix, any columns of this matrix will contain exactly  units. 

Therefore, taking into account the zero vector, the number of zeros in the column is equal to the 

number of ones (Gladkikh et al, 2016). 
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Consider the matrix containing all possible vectors as columns of  matrix of field 

elements, while the unit element of this field is excluded from the composition of the matrix with 

respect to the addition operation (zero vector of the field). For example, the  matrix  can be 

given in the form , where – primitive elements of , 

 set. For binary code, each  element is represented as a binary vector ; 

 etc. If necessary, individual elements of the field in the matrix  can be excluded.  

For example, in conditions of transition to shortened codes. In the general case, a list of all possible 

non-zero code combinations is obtained in the form of a matrix  of dimension, i.e. 

, which, in fact, is a set of all possible combinations of rows of the matrix . All 

elements of the code are contained in the matrix if  is considered as the generator matrix of the 

code:  (Gladkikh et al, 2016). 

Assume that , then a primitive polynomial for the formation of an extended field is 

, and matrix  takes the following form (Gladkikh et al, 2016): 

. 

(5) 
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By applying in matrix  a generator matrix instead of  (for example, PC), it is possible to get a 

modular representation of this code, which can later be used to perform equivalent manipulations 

(permutations) with combinations of the selected code. Select the first 3 columns in 5 and represent 

the elements of these columns in terms of primitive elements  of field. Then to the selected 

first, second and third columns of the resulting matrix  add the 4th, after deleting the first. The 

obtained sets of binary elements can again be represented as a set  (Gladkikh et al, 2016). 

While performing a similar cyclic shift of columns of the matrix , it can generally be represented 

it in the form of a set of elements . Since in the newly formed matrix  , each column 

of which contains one sample of each representative, then in the binary format, each column of 

the matrix  will contain exactly  units.  Matrix  is a non-degenerate one. Indeed, 

(6) 

The last two columns in the matrix  are formed by the simultaneous cyclical shifting of the rows 

in the matrix  by 1, up to  steps. Analysis of the resulting matrix  shows that all  are 

ordered by rows and represent cyclic shifts of the first row. Therefore, while choosing any  

columns from the matrix  , the set of column elements remains unchanged, and the order of the 

columns makes no difference. This property of the modular representation of codes allows 

formulating an equivalence condition for codes: an equivalent code for  code is such a code, 

which source code columns  are permuted preserving all properties of this code unchanged.  
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It is known that non-observance of the code equivalence condition results in an increase in the 

complexity of the computational process performed by the decoder processor by introducing an 

additional non-degeneracy property refinement procedure for the newly formed matrix. If this 

property conditions are not met, then the decoder carries out additional symbol permutations with 

mandatory verification of the non-degeneracy property in new matrices. Analysis shows that this is 

always true for a representation of  type. If  matrix is replaced by  generator matrix 

of some block code, this condition can be violated by applying permutations. Thus, not all 

permutations of columns of the generator code matrix lead to the formation of equivalent codes. 

The appearance of such an unfavourable event is highly probable, and therefore, each permutation 

of columns requires a correctness verification of the equivalent code formation procedure (Gladkikh 

et al, 2016). 

Based on the algebraic theory of groups and fields, the algorithms for non-algebraic decoding of 

block codes have been developed, including PCs that use lexicographic techniques of partitioning 

space of allowed code vectors into clusters (lists) with processing of these lists by permutations, 

using the equivalence property of systematic and non-systematic block codes. The algorithm of 

lexicographical processing of any received code vector is reduced to the following steps (Gladkikh 

et al, 2016; Ganin et al, 2017; Gladkikh et al, 2017): 

Step 1. Receive a  soft-decision symbols (SDS) code vector from a communication channel. 

Step 2. Next, it is necessary to process  symbols (digit positions) that are responsible for the 

cluster number. In this case, positions of the specified symbols (digit positions) are known 

beforehand on the receiver side. The decoder evaluates the level of their reliability and, in case of 

distortion performs their recovery using the received redundant symbols. The receiver decides on 

the cluster number. 
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Step 3. Next, it is necessary to call from the base of key combinations relevant both to the given 

cluster distribution, and the specific key combination, and use it to convert the received vector into 

a base (zero) cluster. 

Step 4. Arrange the columns of the base cluster using the SDS ranking in descending order for the 

received vector. 

Step 5. It is necessary to make sure that in the selected  the positions of the columns of an 

ordered base (zero) cluster formed elements of the Galois field , which indicates the 

absence of linear dependence among the selected columns. Perform another sorting, if necessary. 

Step 6. Recover the vector and reverse the permutation of its elements, highlighting the true error 

vector. 

The essence of PC permutation decoding based on the lexicographic approach that  code with 

the generator matrix  and Hamming metric comprising a set of allowed code vectors 

 during the list decoding of the word received from  interference 

channel, where  is the received vector,  is transmitted vector,  is the error vector, and 

 is the error list for  set of words that situated from the word  at the distance of 

and closer. Based on the maximum likelihood criterion, the decoder replaces  word with 

 vector from list, which has the largest number of coincident positions with word. 

This work shows the possibility of partitioning the space  into clusters using structural features 

(algebraic patterns) of noise-immune codes. Each cluster contains a closed set of 

combinations, where ,  are the number of the same bit numbers for any combination of 

space allocated to the cluster flag, while for systematic codes  and  
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(Gladkikh et al, 2016; Ganin et al, 2017; Gladkikh et al, 2017; Chilikhin, 2014; Gladkikh & 

Chilikhin, 2014; Gladkikh & Chilikhin, 2013). 

The ordering of  numbers is a lexicographic procedure that allows to reduce the time of the list 

formation by  times due to the single-valued allocation from  combinations of the cluster with 

number, hence, . Assuming that for the whole  set, the following 

expression is obtained (Chilikhin, 2014; Gladkikh & Chilikhin, 2014; Gladkikh et al, 2013; 

Gladkikh et al., 2016): 

 

A selection the same  digit positions of the systematic code for all  allows to reduce the 

length of the list by  times using partitioning of  space into  clusters. A similar procedure 

is valid for non-systematic codes, such as PC, despite the absence of a pronounced structure in the 

allocation of information bits (Gladkikh et al, 2016). 

Consider an example of applying the described algorithm for PC (8.4). All allowed combinations of 

the codebook are shown in Table 2. For the sake of visual simplicity, we highlighted the symbols of 

the code combination (high-order bits) forming the cluster number (Ganin et al, 2017). 
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Table 2 – Correspondence of information symbols and code combinations obtained after 

encoding. 

K, bit N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7 

0000 0 0 0 0 0 0 0 0 

0001 1 1 1 1 1 1 1 1 

0010 1 0 1 0 1 0 1 0 

0011 0 1 0 1 0 1 0 1 

0100 1 1 0 0 1 1 0 0 

0101 0 0 1 1 0 0 1 1 

0110 0 1 1 0 0 1 1 0 

0111 1 0 0 1 1 0 0 1 

1000 1 1 1 1 0 0 0 0 

1001 0 0 0 0 1 1 1 1 

1010 0 1 0 1 1 0 1 0 

1011 1 0 1 0 0 1 0 1 

1100 0 0 1 1 1 1 0 0 

1101 1 1 0 0 0 0 1 1 

1110 1 0 0 1 0 1 1 0 

1111 0 1 1 0 1 0 0 1 

For the transition to cluster formation, it is necessary to structure the high-older bits of the allowed 

code combinations. The process of codebook clustering is presented in Table 3 (Ganin et al, 2017). 
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Table 3 – Correspondence of information symbols and code combinations obtained after 

encoding and broken into unique identifiers (clusters). 

K, bit N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7 

0000 0 0 0 0 0 0 0 0 

0101 0 0 1 1 0 0 1 1 

1001 0 0 0 0 1 1 1 1 

1100 0 0 1 1 1 1 0 0 

0011 0 1 0 1 0 1 0 1 

0110 0 1 1 0 0 1 1 0 

1010 0 1 0 1 1 0 1 0 

1111 0 1 1 0 1 0 0 1 

0010 1 0 1 0 1 0 1 0 

0111 1 0 0 1 1 0 0 1 

1011 1 0 1 0 0 1 0 1 

1110 1 0 0 1 0 1 1 0 

0001 1 1 1 1 1 1 1 1 

0100 1 1 0 0 1 1 0 0 

1000 1 1 1 1 0 0 0 0 

1101 1 1 0 0 0 0 1 1 

 

The generation matrix  of PC (8,4) in a systematic form is written as follows (Gladkikh et al, 

2016): 

 

 

 

Cluster 10 
 

 

Cluster 11 
 

Cluster 00  
(base cluster) 

 

Cluster 01 
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Assume a vector at the output of the encoder in the following form: 

  1 0 0 1 0 1 1 0 

The transmitter replaces the least significant bit (the rightmost) of the combination with the parity 

bit for two high-order bits , defining the cluster number with the purpose to protect it. 

Consequently, the vector is transferred to the communication channel in the following form: 

 1 0 0 1 0 1 1 1 

The receiver takes the vector by identifying the reliability gradation for each symbol, according to 

some known principle (likelihood ratio test).  Assume a correspondence of symbols and reliability 

gradation symbols (for the sake of simplicity, it is expedient to use the term SDS) as shown below 

(Gladkikh et al, 2016) 

 1 0 0 1 0 1 1 1 

 1 1 1 0 1 1 1 1 

МРС 6 2 1 3 4 7 6 7 

Consequently, the error vector is represented by the following sequence 

 

 

0 1 1 1 1 0 0 0 

At the first step of decoding, having received a vector with errors, the decoder checks the cluster 

number for parity. In the present example, parity check has shown a negative result, so the decoder 

inverts the second bit in the cluster number, since it has the worst result of reliability estimation. It 

should be noted that this approach to protecting the cluster number is very trivial. At the moment, 

there is a whole complex of more effective methods for protecting cluster number, but 
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implementation of these approaches leads to an increase in the redundancy of the code combination 

(Gladkikh et al, 2016). 

The vector used for the subsequent analysis takes the following form: 

 1 0 1 0 1 1 1 1 

It is worth noting that initially, the error has been deliberately introduced while encoding, for the 

purpose of cluster number protection. Thus, the distribution of ranks will differ (bold and 

underlined symbols denote the maximum SDS values). 

 1 0 0 1 0 1 1 1 

 1 0 1 0 1 1 1 1 

SDS 6 2 1 3 4 7 6 0 

The number of the restored cluster is 10. Thus, for transition to the truncated code combination, the 

decoder performs a modulo-2 addition with the keyword of this cluster, while the keyword for the 

second cluster is written in the following form: 

 1 0 1 0 0 1 0 1 

After deleting the cluster number: 

 1 0 0 1 0 1 

Using the  procedure, the vector with  symbols ranked in descending order is 

obtained. 

  

1 0 1 0 1 1 1 1 

1 0 1 0 0 1 0 1 

Thus, the vector  has the following form: 

 0 0 0 0 1 0 1 0 

Next, discard the bits responsible for the cluster number, due to the above decision on the reliable 

transmission.  Thus, the recourse vector takes the following form: 
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 0 0 1 0 1 0 

Hence, the SDS for each earlier identified symbol of this vector are as follows: 

 0 0 1 0 1 0 

SDS 1 3 4 7 6 0 

Next, the vector in question should be considered in decreasing order of the reliability gradient. The 

last character is assigned the SDS below the minimum value (i.e. 0), since this symbol has been 

used to protect the cluster number (parity check), and a forced change of its value has been initially 

made.  For this reason, according to the reliability gradient, this symbol occupies the last position, 

which is the most unreliable (Gladkikh et al, 2016). 

SDS 7 6 4 3 1 0 

 0 1 1 0 0 0 

The symbols of the maximum SDS values are highlighted in grey, while 7 0, 6 1. After the 

conversion into the base cluster (cluster ID ), it is necessary to carry out a permutation of the 

columns, with regard for the reliability gradation. Correspondence of the SDS with the columns of 

the base cluster is shown in Table 4 (Gladkikh et al, 2016). 

Table 4 – Correspondence of the SDS with the columns of the base cluster ( ) 

Base 

cluster 

MPC 

1 3 4 7 6 0 

0 0 0 0 0 0 0 0 

0 0 1 1 0 0 1 1 

0 0 0 0 1 1 1 1 

0 0 1 1 1 1 0 0 

 

After the permutation, the correspondence takes the form shown in Table 5. 
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Table 5 – Correspondence of the SDS with the columns of the base cluster ( ) after the 

permutation, with regard for the reliability gradation. 

Base 

cluster 

MPC 

7 6 4 3 1 0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 1 1 1 

0 0 1 1 1 0 0 1 

0 0 1 0 1 1 1 0 

 

Then, the keyword in the context of the base cluster is: 

 0 1 0 1 1 1 

Vector Wrez(10) is obtained by adding this word and the permuted vector Wshort(p): 

 0 1 0 1 1 1 

 0 1 1 0 0 0 

 
0 0 1 1 1 1 

Then, the original sequence of characters: 

SDS  7 6 4 3 1 0 

 0 0 1 1 1 1 

SDS 

source 

1 3 4 7 6 0 

 1 1 1 0 0 1 

Adding to this vector the cluster number  and 

 1 0 1 0 1 1 1 1 
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vector, results in the following sequences:  

 1 0 1 0 1 1 1 1 

 0 0 1 1 1 0 0 1 

 1 0 0 1 0 1 1 0 

 1 0 0 1 0 1 1 1 

In so doing, the original code word is obtained immediately. In addition, during processing, the 

deliberate introduction of the error regarding the protection of the cluster has been taken into 

account. Thus, the specified algorithm allows to correct n-k+1 erasions. This fact suggests that the 

algorithm of permutation decoding based on the lexicographic approach makes maximum use of the 

redundancy introduced into the code. However, in the step of column permutation with regard to the 

SDS reliability gradation, a situation may arise when positions with erroneous symbols in the code 

combination have high SDS values. Such an effect leads to error propagation because the received 

vector will be incorrectly converted into the base cluster (Gladkikh et al, 2016; Gladkikh et al, 

2017).  

The erasure link properties are used while calculating SDS for a binary channel in the receiver 

decision circuit. Its parameters are chosen so that the erasure interval is wide and constant in value. 

Thus, all signals received outside the uncertainty zone of (in the neighbourhood of mathematical 

expectation of the random variable ), the first decision scheme assigns a maximum SDS gradation 

equal to . Other values of  are formed on the basis of the linear characteristic, where 

 is the maximum estimate. The value of  is considered sufficient to receive symbols. 

The generic analytical expression for all types of modulation of characteristics within the erasure 

interval  in the worst-case scenario is written as follows (Gladkikh et al, 2016; Gladkikh & 

Klimov, 2013; Gladkikh & Chilikhin, 2014; Klimov & Solodovnikova, 2014): 



21 

 

 

where   is the mathematical expectation of the parameter being modulated,  is the 

multiplicative interference ratio. By manipulating angular brackets in (8), the receiver constructor 

can reduce the computational error  or proceed to the rational indicators of this parameter, 

which corresponds to generally accepted norms (Gladkikh et al, 2016; Gladkikh & Klimov, 2013; 

Gladkikh & Chilikhin, 2013; Klimov & Solodovnikova, 2014). 

Figure 3 – Comparative SDS data  for  dB and  

 

a) estimates of correct symbols.                             b) estimates of erroneous symbols. 

Figure 4 – Comparative SDS data  for  dB and  

 

a) estimates of correct symbols.                             b) estimates of erroneous symbols. 
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Figures 3 and 4 show polygons of estimates for correctly and erroneously received symbols 

depending on the signal-to-noise ratio. For convenience, the code combination in the figures is 

shown in the form of  identity matrices with signal-to-noise ratios of 0 and 3 dB, which are 

of special scientific interest (Gladkikh et al, 2016; Gladkikh et al, 2013).  

Based on the received characteristics, it is obvious that when the signal-to-noise ratio increases, the 

number of occurrences of erroneous symbols with high SDS values decreases. This is due to an 

improvement in the noise environment in the communication channel in question. Nevertheless, in 

the range of low values of the signal-to-noise ratio, erroneous symbols with high SDS values are 

observed.  

This paper considers the design features of PC code combinations to eliminate this effect. The main 

structural feature of allowed PC combinations is their structural symmetry (or inverse structural 

symmetry) about n/2 combination symbols. This fact can be exemplified by  

vector for the PC code (16,8). This code length has been chosen for a more vivid demonstration of 

the code design features. It is obvious that the sum of a modulo-2 addition of n/2 symbols of a 

combination with each other consists of Boolean zeros only. Accordingly, the sum n/2 symbols of 

 vector from the same set of allowed PC (16,8) combinations consists of 

boolean ones only [4, 6, 18] (Gladkikh et al, 2015; Ganin et al., 2017; Chilikhin, 2015). 

 

Moreover, only boolean ones are formed when the code combination is anti-symmetric about n/2 

symbols, and only boolean zeros – if n/2 symbols of the combination are identical to each other. 

Such a structural feature of the code (SFC) is preserved even when the code combination is 

decomposed to a minimum of 2 symbols. In general, a PC combination is divided by n/2 j, where  

j=1,2…m-1 is the decomposition step. Assume the following vector at the output of the encoder (an 
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arbitrarily vector to understand the mechanism under consideration) (Chilikhin, 2015; Tal & Vardy, 

2011; Tal & Vardy, 2013; Coetzee & Mammen, 2017): 

 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 

The receiver takes the vector form the communication channel as follows: 

 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 

Firstly, to check the received combination for errors, it is necessary to carry out a modulo-2 

addition of parts of this combination consisting of elements.   

 

0 1 1 0 1 0 0 1 

0 1 1 0 0 0 0 1 

 0 0 0 0 1 0 0 0 

Next, it is necessary to carry out a modulo-2 addition of parts of this combination consisting of 

elements.  

 

1 0 0 1 

0 0 0 1 

 1 0 0 0 

The 3rd decomposition step does not allow unequivocally identifying the error vector or confirming 

the hypothesis of error-free transmission of the original message. To restore the original message, it 

is necessary to perform a procedure of direct addition (see Figure 5) and a procedure of cross-

addition (see Figure 6) for the received code sequence (Chilikhin, 2015; Tal & Vardy, 2011; Tal & 

Vardy, 2013; Coetzee & Mammen, 2017). 
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Figure 5 – Schematic representation of the direct addition operation by elements from the 

first and second half . 

 

 

 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 

 

 

Figure 6 – Schematic representation of the cross-addition operation by elements 

of the combination 

 

 

 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 

 

 

It is worth noting that the use of SFC PC allows not only assessing the correctness or falsity of SDS 

for all bits of the received code combination, but also providing protection of the cluster number 

without introducing additional redundancy. It is possible to create a number of rules allowing 

application of this methodology and providing an SFC-based effective protection of the cluster 

number. To do this, the following condition should be met (Gladkikh et al, 2016; Ganin et al, 2017; 

Chilikhin, 2015): 

1. Size of the cluster number does not exceed the number of information symbols, ; 

2. Size of the cluster number is not less than ; 

3. Size of the cluster number is a multiple of 2 due to SFC PC. 

 

 
1 

 
2 

 
1 

 
2 
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Modified algorithm with provision for the structural features of code combinations.  

To understand the proposed modifications of the lexicographic decoding algorithm for polar codes, 

consider the clustering procedure for a set of allowed code combinations for PC lengths of . 

Table 6 and 7 show the correspondences of information symbols and received code combinations 

with provision for the clustering using a unique identifier (Gladkikh et al, 2016; Ganin et al, 2017). 

Table 6 – Correspondence of information symbols and code combinations obtained after 

encoding. 

K, bit /  K, bit N, bit /  N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7 

0000 0 0 0 0 0 0 0 0 

0001 1 1 1 1 1 1 1 1 

0010 1 0 1 0 1 0 1 0 

0011 0 1 0 1 0 1 0 1 

0100 1 1 0 0 1 1 0 0 

0101 0 0 1 1 0 0 1 1 

0110 0 1 1 0 0 1 1 0 

0111 1 0 0 1 1 0 0 1 

1000 1 1 1 1 0 0 0 0 

1001 0 0 0 0 1 1 1 1 

1010 0 1 0 1 1 0 1 0 

1011 1 0 1 0 0 1 0 1 

1100 0 0 1 1 1 1 0 0 

1101 1 1 0 0 0 0 1 1 

1110 1 0 0 1 0 1 1 0 

1111 0 1 1 0 1 0 0 1 
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The procedure of dividing into clusters is reduced to structuring according to the high-order bits of 

the allowed code combinations. A breakdown of the codebook into clusters is presented in Table 7. 

Table 7 – Correspondence of information symbols and code combinations obtained after 

encoding and broken into unique identifiers (clusters). 

K, bit /  K, bit N, bit /  N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7 

0000 0 0 0 0 0 0 0 0 

0101 0 0 1 1 0 0 1 1 

1001 0 0 0 0 1 1 1 1 

1100 0 0 1 1 1 1 0 0 

0011 0 1 0 1 0 1 0 1 

0110 0 1 1 0 0 1 1 0 

1010 0 1 0 1 1 0 1 0 

1111 0 1 1 0 1 0 0 1 

0010 1 0 1 0 1 0 1 0 

0111 1 0 0 1 1 0 0 1 

1011 1 0 1 0 0 1 0 1 

1110 1 0 0 1 0 1 1 0 

0001 1 1 1 1 1 1 1 1 

0100 1 1 0 0 1 1 0 0 

1000 1 1 1 1 0 0 0 0 

1101 1 1 0 0 0 0 1 1 
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However, the proposed modification has a certain functional limitation. The lexicographic approach 

to decoding described above is presented for a PC with a ratio of codeword bit length and 

information bit length formulated as. In the context of correcting ability (error correction) and 

encoding rate, the optimal ratio is obtained when the information bit length is equal to . 

However, with an increase of informational bit length, it is not always possible to perform the 

decomposition in the second and subsequent steps (Gladkikh et al, 2016; Ganin et al, 2017; 

Chilikhin, 2015). 

In this case, the conceptual rule of the first decomposition step (structural symmetry about ) is 

valid for any information bit length. It can be said that the imposed constraint does not change some 

functionalities of the proposed approach, e.g. protection of the cluster number.  

Consider the generator matrix PC (8.5), obtained as a Kronecker product of the Arikan matrix 

(kernel), prior to removing weak («frozen» or unreliable) rows (rows with low weight or rows with 

the smallest number of Boolean ones), using the Bhd technique.  

A set of allowed code combinations for PC (8.5) is formed using this generator matrix. It is 

presented in Table 8. The combinations that do not have symmetry about the 2nd and subsequent 

SD are highlighted in dark grey (Ganin et al, 2017). 
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Table 8 – Correspondence of information symbols and obtained PC code combinations after 

encoding (k=5). 

K, bit /  K, bit N, bit /  N, bit 

00000 0 0 0 0 0 0 0 0 

00001 1 1 1 1 1 1 1 1 

00010 1 0 1 0 1 0 1 0 

00011 0 1 0 1 0 1 0 1 

00100 1 1 0 0 1 1 0 0 

00101 0 0 1 1 0 0 1 1 

00110 0 1 1 0 0 1 1 0 

00111 1 0 0 1 1 0 0 1 

01000 1 0 0 0 1 0 0 0 

01001 0 1 1 1 0 1 1 1 

01010 0 0 1 0 0 0 1 0 

01011 1 1 0 1 1 1 0 1 

01100 0 1 0 0 0 1 0 0 

01101 1 0 1 1 1 0 1 1 

01110 1 1 1 0 1 1 1 0 

01111 0 0 0 1 0 0 0 1 

10000 1 1 1 1 0 0 0 0 

10001 0 0 0 0 1 1 1 1 

10010 0 1 0 1 1 0 1 0 

10011 1 0 1 0 0 1 0 1 

10100 0 0 1 1 1 1 0 0 

10101 1 1 0 0 0 0 1 1 

10110 1 0 0 1 0 1 1 0 

10111 0 1 1 0 1 0 0 1 

11000 0 1 1 1 1 0 0 0 

11001 1 0 0 0 0 1 1 1 

11010 1 1 0 1 0 0 1 0 

11011 0 0 1 0 1 1 0 1 

11100 1 0 1 1 0 1 0 0 

11101 0 1 0 0 1 0 1 1 

11110 0 0 0 1 1 1 1 0 

11111 1 1 1 0 0 0 0 1 
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It is obvious that with an increase in the number of information symbols within the range of 

, the second and subsequent decomposition steps cannot be performed. This is 

because the number of combinations 00, 11, 01, 10 is finite. It is important to note that structural 

symmetry about  is preserved. Thus, this aspect should be taken into account while 

implementing the theory of structural features of PC code combinations in decoding algorithms. 

Modified algorithm based on cluster number, and with the largest number of soft symbol 

decisions. 

An analysis of the set of allowed PC combinations allows concluding that it is not necessary to use 

only a0 a1 bits as cluster identifiers. The specificity of image compression code is in incomplete 

codebook (Ganin et al, 2017). 

In this connection, it is necessary to use only such combinations of bits that have a consistent 

(identically equal) system of key combinations. Otherwise, the use of image compression code is 

impractical. The research shows that when using the pairwise combinations a i ai+1, the system of 

key combinations remains consistent, which opens the prospects of using the most «strong» bits as 

cluster identifiers in the context of SDS. Tables 9 and 10 show a similar correspondence. 

Table 9 – Correspondence of information symbols and received code combinations after 

encoding with and without breaking into clusters (a0 a1 cluster number). 

K, bit /  

K, bit 

N, bit /  N, bit  K, bit /  

K, bit 

N, bit /  N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7  a0 a1 a2 a3 a4 a5 a6 a7 

0000 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 

0001 1 1 1 1 1 1 1 1 0101 0 0 1 1 0 0 1 1 

0010 1 0 1 0 1 0 1 0 1001 0 0 0 0 1 1 1 1 

0011 0 1 0 1 0 1 0 1 1100 0 0 1 1 1 1 0 0 

0100 1 1 0 0 1 1 0 0 0011 0 1 0 1 0 1 0 1 

0101 0 0 1 1 0 0 1 1 0110 0 1 1 0 0 1 1 0 

/ 2 1 1N N+  −
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0110 0 1 1 0 0 1 1 0 1010 0 1 0 1 1 0 1 0 

0111 1 0 0 1 1 0 0 1 1111 0 1 1 0 1 0 0 1 

1000 1 1 1 1 0 0 0 0 0010 1 0 1 0 1 0 1 0 

1001 0 0 0 0 1 1 1 1 0111 1 0 0 1 1 0 0 1 

1010 0 1 0 1 1 0 1 0 1011 1 0 1 0 0 1 0 1 

1011 1 0 1 0 0 1 0 1 1110 1 0 0 1 0 1 1 0 

1100 0 0 1 1 1 1 0 0 0001 1 1 1 1 1 1 1 1 

1101 1 1 0 0 0 0 1 1 0100 1 1 0 0 1 1 0 0 

1110 1 0 0 1 0 1 1 0 1000 1 1 1 1 0 0 0 0 

1111 0 1 1 0 1 0 0 1 1101 1 1 0 0 0 0 1 1 

 

Table 10 – Correspondence of information symbols and received code combinations after 

encoding with and without breaking into clusters (high-order bits: a4 a5 ). 

K, bit /  

K, bit 

N, bit /  N, bit  K, bit /  

K, bit 

N, bit /  N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7  a4 a5 a0 a1 a2 a3 a6 a7 

0000 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 

0001 1 1 1 1 1 1 1 1 0101 0 0 0 0 1 1 1 1 

0010 1 0 1 0 1 0 1 0 1000 0 0 1 1 1 1 0 0 

0011 0 1 0 1 0 1 0 1 1101 0 0 1 1 0 0 1 1 

0100 1 1 0 0 1 1 0 0 0011 0 1 0 1 0 1 0 1 

0101 0 0 1 1 0 0 1 1 0110 0 1 0 1 1 0 1 0 

0110 0 1 1 0 0 1 1 0 1011 0 1 1 0 1 0 0 1 

0111 1 0 0 1 1 0 0 1 1110 0 1 1 0 0 1 1 0 

1000 1 1 1 1 0 0 0 0 0010 1 0 1 0 1 0 1 0 

1001 0 0 0 0 1 1 1 1 0111 1 0 1 0 0 1 0 1 

1010 0 1 0 1 1 0 1 0 1010 1 0 0 1 0 1 1 0 

1011 1 0 1 0 0 1 0 1 1111 1 0 0 1 1 0 0 1 

1100 0 0 1 1 1 1 0 0 0001 1 1 1 1 1 1 1 1 

1101 1 1 0 0 0 0 1 1 0100 1 1 1 1 0 0 0 0 

1110 1 0 0 1 0 1 1 0 1001 1 1 0 0 0 0 1 1 

1111 0 1 1 0 1 0 0 1 1100 1 1 0 0 1 1 0 0 
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Modified algorithm based on the cluster number spacing over the whole length of the code 

combination. 

An interference analysis in the communication channel shows that influence of interferences is 

generally impulsive (except of anthropogenic factors resulting in complete signal suppression). 

Provided a sufficient length of the code structure, even an occurrence of errors makes it possible to 

void this influence.  

Thus, it is advisable to distribute the bits responsible for the cluster number along the whole length 

of the combination. Table 11 presents such an opportunity (Ganin et al, 2017). 

Table 11 – Correspondence of information symbols and received code combinations after 

encoding with and without breaking into clusters (high-order bits: a1 a6 ). 

K, bit /  

K, bit 

N, bit /  N, bit  K, bit /  

K, bit 

N, bit  /  N, bit 

 a0 a1 a2 a3 a4 a5 a6 a7  a1 a6 a2 a3 a4 a5 a0 a7 

0000 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 

0001 1 1 1 1 1 1 1 1 0111 0 0 1 0 1 1 0 1 

0010 1 0 1 0 1 0 1 0 1011 0 0 1 1 0 0 1 1 

0011 0 1 0 1 0 1 0 1 1100 0 0 0 1 1 1 1 0 

0100 1 1 0 0 1 1 0 0 0010 0 1 1 1 0 1 0 0 

0101 0 0 1 1 0 0 1 1 0101 0 1 0 1 1 0 0 1 

0110 0 1 1 0 0 1 1 0 1001 0 1 0 0 0 1 1 1 

0111 1 0 0 1 1 0 0 1 1110 0 1 1 0 1 0 1 0 

1000 1 1 1 1 0 0 0 0 0011 1 0 0 0 1 0 1 1 

1001 0 0 0 0 1 1 1 1 0100 1 0 1 0 0 1 1 0 

1010 0 1 0 1 1 0 1 0 1000 1 0 1 1 1 0 0 0 

1011 1 0 1 0 0 1 0 1 1111 1 0 0 1 0 1 0 1 

1100 0 0 1 1 1 1 0 0 0001 1 1 1 1 1 1 1 1 

1101 1 1 0 0 0 0 1 1 0110 1 1 0 1 0 0 1 0 

1110 1 0 0 1 0 1 1 0 1010 1 1 0 0 1 1 0 0 

1111 0 1 1 0 1 0 0 1 1101 1 1 1 0 0 0 0 1 
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Obviously, this approach helps counter grouping of errors and powerful impulse interference. 

However, such a spacing limit the choice of bits responsible for the cluster number with the highest 

SDS value, because the key combination system varies from combination to combination (Ganin et 

al, 2017). 

Modified algorithm for all bit combination responsible for the cluster number. 

The use of any combination of bits responsible for the cluster number greatly extends capabilities of 

lexicographic PC decoding. However, its implementation requires knowing the entire codebook. 

This completely breaks down the concept of image compression code. Nevertheless, to evaluate the 

proposed approaches, this modification will be realized in the context of simulation modelling 

(Ganin et al, 2017). 

Results. 

Based on the developed simulation models, the potential characteristics of the proposed algorithms 

for lexicographic PC decoding are studied in comparison with known decoding schemes for such 

codes. Codes with the lengths of 8, 16, 32n n n= = = , which to the fullest extent meet the 

requirements of the management control system tested. Figure 7 shows testing results of simulation 

models in observance of the provision for acceptable statistical errors (Gladkikh et al, 2016; 

Gladkikh et al, 2017; Gladkikh et al, 2017). 

With the block length of 8n = the proposed LD algorithm shows the best correcting capability. This 

is due to the small value of the code vector. The potential LD characteristics for the PC code 

(32,16) are much worse than for BP and AWF, because the model for breaking allowed codewords 

into 4-bit clusters has been used to reduce computational costs. But for non-systematic codes the 

cluster length is equal to / 2f n  in this case. With reduction of cluster length, the correcting 

capacity of LD becomes comparable with the relevant BP parameter. By varying length of the code 
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vector and decreasing number of information bits, the LD PC (16.5) shows similar characteristics 

with BP. In this case, an increase in the correcting capability is associated with an increase in the 

number of redundant symbols. Changes in LD PC characteristic while preserving the length of the 

code vector and increasing in the number of information bits are stipulated by the expected trend 

towards degradation of correcting capability characteristic for all decoding schemes. All the 

considered methods and algorithms for their implementation turned out to be effective with respect 

to SCD and the Tal-Vardy algorithm in the range of parameter ratios from 0 to 3 dB. The poor 

corrective characteristics of SCD in the range of low signal-to-noise ratios are due to avalanche-like 

error propagation associated with the sequence of computational process. The Tal-Vardу algorithm 

shows poorer performance in the same range of communication channel due to appearance of false 

branches. At higher values of this parameter, the proposed algorithms increase their efficiency, and 

the reason for this is the manifestation of the effect of minimizing the occurrence of false/erroneous 

symbols of the previous steps and branches in SCD implementation procedures and the Tala-Vardy 

algorithm. (Gladkikh et al, 2016; Korada, 2009; Tal & Vardy, 2011; Tal & Vardy, 2013). 

Figures 7 and 8 shows the comparative characteristics of the classical PC lexicographic decoding 

algorithm with its modified versions for PC (8-4) and PC (32-16) respectively. 

1. LD is the PC permutation decoding algorithm based on the lexicographic approach; 

2. LDsfc is the modified algorithm taking into account the structural features of code combinations; 

3. LDmax is the modified algorithm with based on the cluster number with the largest value of soft 

symbol solutions;  

4. LDdcn is the modified algorithm based on the cluster number spacing over the entire length of 

the code combination;  

5. LDall is the modified algorithm for all combinations of bits responsible for the cluster number; 
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6. LDmix is the modified algorithm combining several modifications (SFC and cluster number with 

the highest SDS value). 

Figure 7 – Results of PC (8,4) simulation modelling. 

 

Figure 8 – Results of PC (32,16) simulation modelling. 
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As can be seen from above, the largest energy gain of about 0 7 1,  dB is observed at signal-to-noise 

ratio  dB, while in the range of 1 3 dB the gain is about 0 2 0 5, ,  dB. This is due to a reduction 

in the number of erroneous symbols with high values of SDS index and with improving interference 

environment. Based on the results of simulation modelling, the following energy modifications 

have the greatest energy gain: 

1. LDall is a modified algorithm for all combinations of bits that are responsible for the cluster 

number – 0 2 0 6, , dB, depending on parameters of a communication channel; 

2. LDall is the modified algorithm for all combinations of bits that are responsible for the cluster 

number – 0 3 0 75, , dB, depending on parameters of a communication channel (not suitable for 

code compression); 

3. LDmix is a modified algorithm combining several cluster modifications (SFC and cluster 

number with the highest SDS value) – 0 5 1,  dB, depending on parameters of a communication 

channel. 

Discussion.  

A comparative analysis of the above characteristics allows concluding that the proposed approach 

and its modifications in the range of low signal-to-noise ratio is prospective. The received data does 

not significantly change the decoder logic (Ganin et al, 2017). 

The control unit is responsible for inclusion of additional blocks or their combinations to ensure a 

higher correcting capacity of the algorithm in question. 

CONCLUSIONS.  

Thus, it can be concluded that the use of the lexicographic approach to PC decoding makes it 

possible to improve correction characteristics (BER) of this class of block error correcting codes in 

the range of low signal-to-noise ratios. Implementation of various modifications provides an 
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additional energy gain and significantly expands prospects and application scope of PC.  Individual 

application of the PC corresponds to a great extend with the known data reliability requirements for 

modern and prospective information management complexes. However, the attractiveness of the 

proposed PC decoding algorithms in the range of small values reflects the expediency of using such 

codes in composition with 2D codes and above. 
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