

Año: VINúmero: Edición EspecialArtículo no.:14Período: Marzo, 2019.TÍTULO: El desarrollo de instrumentos de aprendizaje genético basados en metacognitivos en la
escuela secundaria superior.

AUTORA:

1. Elya Nusantari.

RESUMEN: El propósito de esta investigación es desarrollar instrumentos de aprendizaje que produzcan metacognición de instrumentos de aprendizaje y un libro de texto basado en metacognitivos sobre la genética. Esta investigación es una investigación de desarrollo mediante el uso de Definir, Diseño, Desarrollo, Diseminación (modelo 4-D Thiagrajan). Tanto el descriptivo cualitativo como el cuantitativo se utilizaron en el análisis de datos. Los resultados de la investigación son productos de instrumentos de aprendizaje y libros de texto cuyas características de presentación corresponden al orden de la ciencia metacognitiva, que consiste en conocimiento declarativo, de procedimiento y condicional. La validación experta y el resultado de la práctica muestran que estos instrumentos han cumplido con los criterios: muy válidos y muy ideales.

PALABRAS CLAVES: Instrumentos de aprendizaje, conocimiento metacognitivo, concepto de genética.

TITLE: The development of metacognitive-based genetic learning instruments at Senior High School.

AUTHOR:

1. Elya Nusantari.

ABSTRACT: The purpose of this research is to develop learning instruments that produce learning instrument metacognition and metacognitive-based text book about genetics. This research is a developmental research by using Define, Design, Development, Dissemination (4-D Thiagrajan model). Both of the qualitative and quantitative descriptive were used in data analysis. The results of the research are learning instrument product and textbook whose presentation characteristics correspond to the metacognitive science order, which consist of declarative, procedural, and conditional knowledge. The expert validation and precision result shows that these instruments have satisfied the criteria: very valid and very ideal.

KEY WORDS: Learning instruments, metacognitive knowledge, genetics concept

INTRODUCTION.

Genetics is a study about genes, genes reproduction, genes expression, and genes heredity. The most difficult concept of genetics faced by the students is genes heredity. Students will be easy to understand if they have a knowledge about the connection among concepts which are related to systematically heredity concept in their cognitive structures. Nusantari (2014, p. 12) in her research states that the connections among concepts refer to genetics' subject material correlation such as: genes, the mitosis and meiosis cell division, splitting process and genetics recombination, Mendel's Laws and the formation of gametes. Other related connections that have to be counted in heredity concept are crossing over, nondisjunction, linked genes on chromosomes, autosomes, and gonosomes. Another concept which is difficult to understand is the correlation between evolution concept and mutation.

Students can understand the genetics concept structurally if the materials presentation are also in good structure. Thus, a teacher needs to rearrange the materials concept presentation in a learning process. The presentation can be conducted by presenting the genetics concept from lower level to the higher level and connecting a concept with other concepts.

The problem learning genetics in high school is students' difficulties in understanding the heredity concept and the other related concept. It can be seen from their learning result that their score in genetics concept are low. It corresponds to the statement of Susantini (2010, p. 21) that the genetics substance material is more difficult than virus and endocrine system. Molina, Reynier Israel Ramírez, et al. 2018; Cavallo, 1996) stated that most genetics main materials have abstract concepts. Furthermore, Esiobu & Soyibo (1995) reported that there are many evidences show that there are more students who are poor in genetics.

The result of a research about the analysis of student's difficulties in undertaking the genetics test shows that the students are difficult to determine gametes and genotypes, crossing over, do not understand the heredity patterns, the causes of various heredity, and the application. Based on limited interview with a Biology teacher, it can be informed that during learning genetics, the students have a hard time to understand the genetics subject material. As the result, these students continue to bring this issue in their college life. They face the same problems in genetics subject. That condition shows that the students are not success in arranging the structure of genetics concept that can help them to solve genetics problems. This issue has to be overcome through a learning that applies a metacognitive science.

Curriculum 2013 develop some former curricula as follows Competence-based Curriculum, 2004 Curriculum, and KTSP Curriculum in 2006 which integrated knowledge, skill, and attitude. Metacognitive domain is an additional domain in Bloom Taxonomy revision. A metacognitive knowledge is student's acquired knowledge about cognitive processes, knowledge that can be used to control cognitive processes. As related to student's understanding toward a concept, the better the comprehension concept, the better the metacognitive knowledge for a problem solving, the better and the tidier the cognitive structure. (Liu, & Zhang, 2016).

stated that metacognitive consists of metacognitive knowledge and metacognitive regulation. Metacognitive knowledge is a knowledge used for thinking process management. It consists of three categories: knowledge of person variables, task variables, and strategy variables. Metacognitive is student's awareness about how s/he learns and his/her ability to determine the difficulty of a problem, ability to observe the level of self-understanding, the ability to use various information to achieve learning purposes, and the ability to determine his/her own learning achievement or in the other words, if a student is able to manage his/her knowledge consciously, so s/he has achieved a meaningful learning process for his/her own self.

A support statement said that metacognition generally means higher level thinking about how a learning task will be handled, and making plans on processes of observing and evaluating comprehension. Ozsoy et.al (2009) said that metacognitive language requires one to accurately and exactly define his/her thought or knowledge. An individual's ability in problem solving depends on effective use of his/her knowledge. If an individual does not have a decent perception about his/her knowledge, he/she can consider.

There are three kinds of metacognitive knowledge; declarative, procedural, and conditional knowledge (Rompayom et al, 2010). A metacognitive knowledge is student's acquired knowledge about cognitive processes, knowledge that can be used to control cognitive processes. Handel, M et. Al. (2013) stated that declarative strategy knowledge is the awareness of strategies, that is, the awareness that a certain strategy exists. Procedural knowledge describes how a strategy works effectively, and conditional knowledge helps to understand which strategies are useful for solving a certain task. The development of metacognitive knowledge starts in kindergarten and continues to

develop beyond adolescence over the entire lifespan as long as educational processes continue to challenge the learner (Veenman et al., 2006).

As related to student's understanding toward a concept, the better the comprehension concept, the better the metacognitive knowledge for a problem solving, the better and the tidier the cognitive structure.

Student's success in organizing his/her cognitive structure can be known by utilizing his/her metacognitive knowledge in problem-solving. Metacognitive knowledge is related with student's understanding toward a concept, the better the comprehension concept, the better the metacognitive knowledge for a problem solving, the better and the tidier the cognitive structure. It means that if his/her cognitive structure is unorganized, theoretically it can be assumed that student's knowledge and concept comprehension in problem-solving is low.

It is in accordance with a result of research by Rompayom, P., et. Al (2010) in Thailand Bangkok which entitled "Metacognitive Inventory Development to Measure Student's Metacognitive Knowledge related to Chemical Bonds Concept". The research developed test instrument in a form of essay questions to measure student's metacognitive language. The result shows that the developed test instrument based on metacognitive knowledge category is appropriate and qualified to measure student's ability in problem-solving.

Based on the result of the research above, I develop a metacognitive-based learning tool which is used for learning genetics science at Senior High School Students. The purpose of this research is to produce metacognitive learning instruments that can be applied in genetics learning in the classroom.

DEVELOPMENT.

Method.

This research is a developmental research to develop metacognitive-based genetics learning tool. The development model in this research is a 4D model adapted from Thiagarajan (1974), consists of define stage, design stage, development stage, and disseminate. However, since the product is launched and implemented in broader scope, so the disseminate stage were not executed, and is ended on the development stage.

The instrument used in this research are needs analysis questionnaire for biology teacher at initial observation stage, expert validation sheet (material expert validator, learning expert, and Biology Teacher as practitioners), student's response questionnaire to respond the learning instruments by its language, content, and material. The data collecting technique is conducted in three stages which are: observation stage, development stage, and also small as well as large group experiment. The data collected was analyzed by using qualitative descriptive method. The revision suggestions from expert are explained narratively. The data of metacognitive-based learning instrument are exposed in Gutman Scale (Range: Very Good, Good, Fair, Poor, and Very Poor with scoring: 1-5) with interpretation: Very Good (*Sangat Baik/SK*) : 5, Good (*Baik/B*) : 4, Fair (*Cukup/C*) : 3, Poor (*Kurang/K*) : 2, Very Poor (*Sangat Kurang/SK*) : 1, then, the range score of each aspect is counted with following formula:

$X = \Sigma^{\chi}$	
<u> </u>	

Notes:

X =Average score

 $\Sigma^{x} =$ Total score

n = Total reviewer

Changed the score of each quality aspect to quantitative marks according to scoring criteria. Marks conversion description of each aspect criteria can be seen in Table 1 below.

			X 7 10 10 4 0 41
Table 1: The Scoring	Criteria of Metacognitive	Knowledge Instrument	Validity with

No Score Range (i) Kategory 1. $X > M_i + 1,5 SB_i$ Very Good Validity $M_i + 0.5 SB_i < X \le M_i + 1.5 SB_i$ Valid 2. 3. $M_i - 0.5 SB_i < X \le M_i + 0.5 SB_i$ Fair Validity $M_i - 1.5 SB_i < X \le M_i - 0.5 SB_i$ Poor Validity 4. $X \leq M_i - 1,5 SB_i$ Very Poor Validity 5.

Category: very good validity to very poor validity

(Sudijono, 1997).

Notes:

Mi = Ideal Mean (Mean Ideal)

= (1/2) (ideal highest score + ideal lowest score

SBi = Ideal Standard Deviation (*Simpangan Baku Ideal*)

= (1/3) (1/2) (ideal highest score – ideal lowest score)

Ideal highest score = total of criteria item x the highest score

Ideal lowest score = total of criteria x the lowest score

Next, counted the ideal percentage of metacognitive science instrument with following formula: P=

Average score X 100%.

Highest score

The ideal percentage formula is counted based on Likert scale as follows:

 Table 2. Percentage scale of Ideal Scoring toward the the Quality of Metacognitive Science

No	Interval	Criteria
1.	81 % - 100 %	Very Good
2.	61 % - 80 %	Good
3.	41 % - 60 %	Fair
4.	21 % - 40 %	Poor
5.	0 % - 20 %	Very Poor

Learning Instrument

Student's response sheets were composed based on Gutman's scale in questions format. The questionnaire is ranked with 0 -1. 0 for the answer "No" and 1 for the answer "yes".

To investigate student's responses toward learning instrument, the following formula had been used:

P=<u>Average score X 100%</u>

Highest score

Notes:

P: respondent's answers percentages

F: total of respondent's answers

N: total respondents

Result and discussion.

The result and the development of this research are explained based on four D model stages. Since the product is launched and implemented in broader scope, so the disseminate stage was not executed. Therefore, there are only three stages: define, design, and development stage.

Define Stage.

An initial observation is conducted in the define stage. The data about school's condition analysis, student's characteristic analysis, and teaching material context are gained on the initial observation. All the data are used to support the composing and developing process of metacognitive-based genetics learning instrument. The data are collected through systematic interview with Biology Teacher at the 12th Grade, and direct interview with students. The systematic interview was conducted by giving an initial observation interview questionnaire which consisted of: some questions related to the Curriculum 2013 comprehension, metacognitive measurement, and teaching material. Based on the initial observation result, it is known that the application of Curriculum 2013 in all observed schools were not running well and the learning process did not fit student's learning need.

Genetics learning by applying metacognitive knowledge is composed the genetics concept in a form of questions hierarchically, based on cognitive domain level from C1 – C6 and are grouped into three knowledge dimension which are: declarative, procedural, and conditional knowledge. This learning process that is guided by focusing on genetics concept order is expected to facilitate students in understanding genetics subject material so the learning purposed of Curriculum 2013 can be achieved. Therefore, the learning instruments such as text book, metacognitive knowledge instrument are developed as a guidance in genetics learning process to organize student's cognitive structure and also as a measurement to determine student's metacognitive knowledge after she or he undertake genetics learning process that corresponds to the Curriculum 2013.

Design Stage

The design stage was conducted based on define stage results. The purpose of this stage is to design a metacognitive knowledge instrument which suit the steps of instrument development and also contain the components of metacognitive-based learning instrument that fits with define stage. Therefore, it can produce a systematic metacognitive knowledge instrument designs and can be used to help students with knowledge mapping and also measure his/her metacognitive ability.

The design of metacognitive-based learning instrument is begun by formulating learning indicators which suits the basic competency of Curriculum 2013 syllabus. The next step is: specify the instrument's layouts.

 Table 3. The Design of Metacognitive Knowledge Instrument's Layout

Knowledge	Core	Basic	Material	Indicators	Questions'	Questions	Notes
Dimension	Competency	Competency			Indicators		
Declarative							
Procedural							
Conditional							

Then, formulate the questions items based on the instrument's layout. Next, specify the scoring guidelines. Scoring guidelines is a guideline that contains some criteria used to determine student's work result score. The score then is defined as a mark that is specified on each answer aspect of a question that contains lowest score and highest score range.

The next step is text book development based on the developed instrument that obeys a text book development rules. The order of concept presentation corresponds to the genetics concept orders which are used to compose metacognitive learning instrument.

Development Stage

The purpose of the development stage is used to develop a metacognitive-based learning tool at genetics subject material. It is conducted by developing the first product design through validation which consists of questions development format in metacognitive-based learning instruments that consist of declarative, procedural, and conditional questions development format. The developed metacognitive instrument becomes a reference in developing Student's Work Sheet and Genetics Text Book.

Metacognitive-based genetics learning instruments development stage is called *Draft I* (First Draft) that is validated by 2 expert lecturers. The material expert lecturer validates the consistency of basic competency with indicators and the authenticity of material. Meanwhile, learning expert lecturer validates the consistency of material based on metacognitive knowledge aspects. The result of validation produces a test result revision by an expert.

On the next step, the revision is validated by a Biology teacher as a practitioner. Some advices from the practitioner are taken as a basic revision instruments that produce a practitioner test result revision. Furthermore, to find and assess overall student's responses and opinion toward content and language quality, these learning instruments were tested on small group as much as 15 students and large group as much as 28 students.

The validation result of metacognitive based learning instruments on genetics subject material and some suggestions by subject material expert, learning expert, and Biology teacher are explained in Table 4, 5, 6, 7, 8, 9, 10.

Then, the validation results are improved and discussed on the Focus Group Discussion activity. The activity is undertaken by 3 lecturers and 2 Biology teachers. Involved lecturers are two expert lecturers from Genetics field and 1 expert lecture from learning design field. The purpose of Focus Group Discussion is to gain a deeper input from validator and practitioner.

Table 4. The Content Validation Result of Metacognitive-Based Learning Instruments by

Material Expert

Components	Suggestions	Revision
1. Metacognitive instruments are composed appropriately with competencies (urgency, relevancy, usage, and continuity)	Metacognitive instruments are composed appropriately with competencies (urgency, relevancy, usage, and continuity)	Metacognitive instrument are appropriate with competencies (urgency, relevancy, usage, and continuity)
2. The instruments are composed appropriately with learning indicators	Metacognitive learning instruments are appropriate with indicators refer to Basic Competency	Metacognitive learning instruments have been composed appropriately with indicators refer to Basic Competency
3. The instrument material contents are appropriate with expected thinking ability stages	The material content of metacognitive instruments are appropriate with school's level and applicable curriculum	The instrument's content material is appropriate with curriculum and expected thinking ability
4. The metacognitive instruments are using questions words or imperative that should be answered by explanation.	It should use question words or imperative corresponds to the action verbs	The questions and imperative have been revised corresponds to the action verbs
5. Expected questions and answers limits are appropriate with metacognitive learning instruments	The answers correspond to the types of questions (declarative, procedural, and conditional)	The punctuation marks have been revised and is consistent with standardized Indonesian language
6. There are some clear instructions about how to answer the questions on learning instruments.	There are some clear instructions but less systematic	The instructions have been written clearly and systematically
7. The metacognitive instruments are equipped with scoring guidelines	The scoring guidelines is good enough	The scoring guidelines is good
8. The sentences formula in metacognitive instruments are communicative	The questions is communicative enough	The questions is communicative
9. The question items are in standardized Indonesian Language	The language used is good enough, however the use of the terms is need to be revised	The questions in the instruments are in standardized Indonesian Language

10. The metacognitive	Good enough, however there	There are no ambiguous
instruments do not use	are some ambiguous	questions on the instruments
ambiguous words	questions	
11. The metacognitive	The language used is good	It uses standardized
instruments do not use taboo	because it is a standardized	Indonesian language
words	Indonesian language	

Table 5. The Content Validation Result of Metacognitive-Based Text Book by Material

Expert

Components	Suggestion	Revision
1. Metacognitive text book	Metacognitive text book is	Metacognitive text book is
is composed appropriately with	composed appropriately with	appropriate with
competencies (urgency,	competencies (urgency,	competencies (urgency,
relevancy, usage, and	relevancy, usage, and	relevancy, usage, and
continuity)	continuity)	continuity)
2. The text book is	Metacognitive text book is	Metacognitive text book
composed appropriately with	appropriate with indicators	has been composed
learning indicators	refer to Basic Competency	appropriately with
		indicators refer to Basic
		Competency
3. The text book contents is	The material content of	The text book's content
appropriate with expected	metacognitive text book is	material is appropriate with
thinking ability stages	appropriate with school's	curriculum and expected
	level and applicable	thinking ability
	curriculum	
4. There are some clear	There are some clear	The instructions have been
instructions about how to	instructions but less	written clearly and
answer the questions on text	systematic	systematically
book		
5. The question items in	The language used is good	The questions in the text
text book are in standardized	enough, however the use of	book are in standardized
Indonesian Language	the terms is need to be	Indonesian Language
	revised especially on	
	instruments and text book	
6. The metacognitive text	Good enough, however there	There are no ambiguous
book does not use ambiguous	are some ambiguous	questions on the text book
words	questions	It was standardized
7. The metacognitive text book does not use taboo words	The language used is good because it is a standardized	It uses standardized
book does not use taboo words		Indonesian language
	Indonesian language	

Table 6. Validation Results of Metacognitive-Based Learning Instruments by Learning

Expert.

Components	Suggestions	Revision
1. The consistency of	The consistency of	The metacognitive learning
metacognitive instruments	metacognitive instruments	instruments design is
design with metacognitive	design with metacognitive	appropriate with
knowledge aspects (declarative,	knowledge aspects	metacognitive knowledge
procedural, and conditional)	(declarative, procedural, and	aspects (declarative,
	conditional) is good enough	procedural, and
		conditional)
2. The connections among	The connections among	It shows a clear connection
concepts in metacognitive	concepts in metacognitive	among declarative,
learning instruments are based	learning instruments are	procedural, and conditional
on declarative, procedural, and	based on declarative,	knowledge
conditional knowledge	procedural, and conditional	
categories	knowledge categories are	
	good enough but it has to be	
	clarified	
3. Metacognitive learning	Metacognitive learning	Metacognitive learning
instruments reveal the	instruments have revealed the	instruments have revealed
connections among concepts	connections among concepts	the connections among
	enough	concepts
4. Metacognitive learning	Metacognitive learning	Metacognitive learning
instruments concern toward a	instruments have enough	instruments have
systematic thinking stages	concern toward a systematic	concerned toward a
	thinking stages	systematic thinking stages
5. Metacognitive-based	The instruments are good	The instruments can help
learning instruments can help	enough to help students with	students with knowledge-
students with knowledge-	knowledge-mapping but they	mapping
mapping	are needed to be revised	

Components	Suggestions	Revision
1. The consistency of	The consistency of	The metacognitive
metacognitive text book design	metacognitive text book	learning text book
with metacognitive knowledge	design with metacognitive	design is appropriate
aspects (declarative, procedural,	knowledge aspects	with metacognitive
and conditional)	(declarative, procedural, and	knowledge aspects
	conditional) is good enough	(declarative, procedural, and conditional)
2. The connections among	The connections among	It shows a clear
concepts in metacognitive text	concepts in metacognitive	connection among
book is based on declarative,	text book is based on	declarative, procedural,
procedural, and conditional	declarative, procedural, and	and conditional
knowledge categories	conditional knowledge	knowledge
	categories are good enough	
	but it has to be clarified	
3. Metacognitive text book	Metacognitive text book has	Metacognitive text book
reveals the connections among	revealed the connections	has revealed the
concepts	among concepts enough	connections among
		concepts
4. Metacognitive text book	Metacognitive text book has	Metacognitive text book
concerns toward a systematic	enough concern toward a	has concerned toward a
thinking stages	systematic thinking stages	systematic thinking
		stages
5. Metacognitive-based text	The text book is good enough	The text book can help
book can help students with	to help students with	students with
knowledge-mapping	knowledge-mapping but they	knowledge-mapping
	are needed to be revised	

Table 7. Validation Results of Metacognitive-Based Text Book by Learning Expert

Table 8. Validity of Metacognitive-Based Learning Instruments on Genetics Subject Material,

Each Aspect is Based on Validation Result by Material Expert and Learning Expert

No.	Aspects	Marks	Score Range	Category
1.	Content	X = 16,5	X > 16,05	Very Valid
2.	Construction	X = 13	X > 12	Very Valid
3.	Language	X = 17,5	X > 16,05	Very Valid
4.	Metacognitive	X = 20	X > 19,95	Very Valid

Table 9. Validity of Metacognitive-Based Text Book on Genetics Subject Material, Each

No.	Aspects	Marks	Score Range	Category
1.	Content	X = 17	X > 16,05	Very Valid
2.	Construction	X = 14	X > 12	Very Valid
3.	Language	X = 17	X > 16,05	Very Valid
4.	Metacognitive	X = 21	X > 19,95	Very Valid

Aspect is Based on Validation Result by Material Expert and Learning Expert.

Table 10. The Ideality of Metacognitive-Based Learning Instruments on Genetics Subject

Material, Each Aspect is Based on Validation Result by Material Expert and Learning Expert

No.	Aspects	Marks	Interval	Category
1.	Content	8 2%	81 % - 100 %	Very Good
2.	Construction	85 %	81 % - 100 %	Very Good
3.	Language	89 %	81% - 100 %	Very Good
4.	Metacognitive	85 %	61 % - 80 %	Good

Table 11. The Ideality of Metacognitive-Based Text Book on Genetics Subject Material, Each

Aspect is Based on Validation Result by Material Expert and Learning Expert

No.	Aspects	Marks	Interval	Category
1.	Content	82,5 %	81 % - 100 %	Very Good
2.	Construction	86,7 %	81 % - 100 %	Very Good
3.	Language	87,5 %	81% - 100 %	Very Good
4.	Metacognitive	80 %	61 % - 80 %	Good

Table 12. Validity of Metacognitive-Based Learning Instruments on Genetics Subject

Material, Each Aspect is Based on Biology Teacher's Assessment

No.	Aspects	Marks	Score Range	Category
1.	Content	X = 18	X > 16,05	Very Valid
2.	Construction	X = 13,5	X > 12	Very Valid
3.	Language	X = 19	X > 16,05	Very Valid
4.	Metacognitive	X = 22,5	X > 19,95	Very Valid

Table 13. Validity of Metacognitive-Based Text Book on Genetics Subject Material, Each

No.	Aspects	Marks	Score Range	Category
1.	Content	X = 18,5	X > 16,05	Very Valid
2.	Construction	X = 14	X > 12	Very Valid
3.	Language	X = 18	X > 16,05	Very Valid
4.	Metacognitive	X = 23	X > 19,95	Very Valid

Aspect is Based on Biology Teacher's Assessment

Table 14. The Ideality of Metacognitive-Based Learning Instruments on Genetics Subject

Material, Each Aspect is Based on Biology Teacher's Assessment

No.	Aspects	Marks	Interval	Category
1.	Content	88 %	81 % - 100 %	Very Good
2.	Construction	90 %	81 % - 100 %	Very Good
3.	Language	90 %	81 % - 100 %	Very Good
4.	Metacognitive	90 %	81 % - 100 %	Very Good

Table 15. The Ideality of Metacognitive-Based Text Book on Genetics Subject Material, Each

Aspect is Based on Biology Teacher's Assessment

No.	Aspects	Marks	Interval	Category
1.	Content	90 %	81 % - 100 %	Very Good
2.	Construction	87 %	81 % - 100 %	Very Good
3.	Language	95 %	81 % - 100 %	Very Good
4.	Metacognitive	88 %	81 % - 100 %	Very Good

Table 16. The Example of Metacognitive-Based Learning Instruments at Genetics Subject

Concept	Declarative	Procedural	Conditional
Genetic Material	A gene is the smallest	Look at the following	Assess the following
	unit of genetic	figures	statements, true or
	substances		false:
	a. Explain the		a. Based on the
	function of a gene		relationship of genes;
	b. How does a		DNA and
	gene differentiate		chromosome, genetic
	from an allele		material that have a
	c. Explain the		role in eukaryotic
	relationship between		living organism
	a gene and a DNA	Based on the figures	hereditary is DNA
	d. Explain the	above, explain the	b. Genetic
	relationship between	structure of a	material in a
	a gene and a	chromosome from the	prokaryotic living
	chromosome	smallest to the largest	organism is DNA not
		molecule.	a chromosome
			c. The genetic
			material in viruses is
			DNA or RNA
Mendel Law	Explain:	You have crossed-	When you have
	a. What is	pollinated a plant	crossed-pollinated a
	Mendel I and Mendel	(tanaman berbiji bulat	plant (tanaman berbiji
	II?	berwarna	bulat berwarna
	b. How is the	kuning/BBKK) that	kuning/BBKK) that
	correlation between	has yellow round seed	has yellow round
	Mendel Law I and	that is dominant	seed that is dominant
	Monohybrid Cross?	toward a plant that has	toward a plant that
	c. How is the	green wrinkled seed	has green wrinkled
	correlation between	(tanaman berbiji kisut	seed (tanaman berbiji
	Mandel Law II and	berwarna	kisut berwarna
	Dihybrid Cross?	hijau/BBKK), how is	hijau/BBKK), can we
	d. Where does	the ratio of F2, if the	get a plant that has
	Mendel Law I and	offspring plant (F) is	green wrinkly seed as
	Mendel Law II	crossed-pollinated	the offspring plant?
	occur?	with the same variety?	Explain the reason
Meiosis Splitting	1 1 1 1	In humans, men and	A gamete in human is
	1. Explain the	women has the same	splitting up. When it
	correlation between	amount of	reaches anaphase I in
	meiosis splitting and	chromosome which	meiosis I, the
	Mendel Law I and	are 46 chromosomes,	homologues
	also Mendel Law II!	when they are married	chromosomes fail to
	2. Explain the	and get a child, the	separate. Then the
	correlation between	child's chromosomes	gamete fuses with

Material.

	meiosis splitting and heredity in eukaryotic living organism!	are still 46. Analyze why that is happened	other gamete during fertilization. Predict how the possibility of the zygote created from that fertilization
Protein Synthesis	Explain the definition of protein synthesis! Explain what is codon and anticodon	Gene expression is a converted process of a gene into an amino acid sequence that occurs during the synthesize of protein, which are transcription and translation Explain the details of the transcription and translation process	process is! A Biology expert is testing a protein synthesis process in a cell. The expert finds a peculiar thing in the translation result amino acid sequence. It is assumed that a mutation occurred in the third codon sequence. According to you, what is the effect of the codon mutation?
Genes Mutation and	What is gene	On his journey to	A population A is on
Evolution	mutation?	Galapagos, Darwin	a territory but then
	Is the mutation	found nine species of	encounter a
	advantageous or	finches that have	geographic isolation
	disadvantageous?	diversity in their beaks	because of natural
	What are the benefits	based on their habitat	disaster. After
	of mutation in	1.102	decades, the
	evolution process?		population A has shown a differentiation or phenotype changes from its original population. Explain, how it can be called as an evolution process? There are 8 species of
		Explain how the nine- species beak are formed? Are finches adapting them selves with their habitat or it is caused by natural selection?	mice in America, each of them inhabits a territory in Atlantic Coast. They have various colors. All eight species adapt with the inhabited soil colors. P.p. subgriseus species live on dark soil and

	have dark fur. P.p
	leucocephalus species
	live on brilliant white
	sands and has light
	fur.
	Analyze how the
	variation are formed
	in those 8 species
	because of gene
	mutation!

Table 17. The Result of Student's Responses Test towards Metacognitive-Based Text Book at

Components **Responses Results** Category 1. Genetics concept 85% comprehensive presentation on the text book clarify genetics concept comprehension 2. The connections 85 % clear among concept on text book are explained clearly Very comprehensive 3. Figures and examples 90 % of the text book increase student's comprehension about genetics Very clear The instruction of the 94 % 4. questions is clear Very Good 95 % The use of 5. standardized Indonesian Language

Genetics Subject Material

Table 18. The Result of Student's Responses Test towards Metacognitive-Based LKPD

Components	Responses Results	Category
1. Genetics concept	85%	comprehensive
presentation on Student's		
Work Sheet clarify genetics		
concept comprehension		
2. The connections	80 %	clear
among concept on Student's		
Work Sheet are explained		
clearly		

3. Figures and examples	90 %	Very comprehensive
of Student's Work Sheet		
increase student's		
comprehension about		
genetics		
4. The instruction of the	94 %	Very clear
questions is clear		
5. The use of	98 %	Very Good
standardized Indonesian		
Language on Student's Work		
Sheet		

In Curriculum 2013, a metacognitive knowledge standard becomes a passing standard for Senior High School Students with some expectation that it can improve student's thinking ability. Metacognitive become one of parameters that has to be achieved by senior high school students in Curriculum 2013. Metacognitive parameter is considered as an important thing because it can support students learning achievement. Metacognitive will push student's ability in problem solving and develop their thinking skills higher.

The developed main instrument contains genetics subject material which is composed that fits concept order and is mapped based on knowledge dimension for a knowledge structure mapping as a measurement of genetics concept for 11th Grade Students of Senior High School, and as learning evaluation tool that correspond to the Curriculum 2013.

The result of an assessment by learning design and material expert toward validity criteria shows that metacognitive-based learning instrument is in very valid criteria. Based on Biology teacher's assessment, the category of the metacognitive-based learning instrument is very valid. The result of an assessment by learning design and material expert toward instrument quality criteria show that metacognitive-based learning instrument is in very good criteria and the result of Biology teacher's assessment shows that category of metacognitive-based learning instrument is also very good.

As Coutinho (2007) shows knowledge refers to knowledge of cognition such as knowledge of skills and strategies that work best for the learner, and how and when to use such skills and strategies. This research has developed a metacognitive knowledge instrument product in genetics subject material for Senior High School Students.

A similar research was conducted that develops a metacognitive knowledge instrument for Chemistry subject at middle school. The instrument was developed to extract declarative, procedural, and conditional knowledge.

Since the instruments measure a target that related to a high-level achievement category, so the developed test is in a form of essay test. The composed instruments then are validated by material expert and learning expert. Instrument validity review is based on the compatibility of the item questions with indicators, the correlation between concept, material presentation, the use of language and the instrument compatibility with metacognitive knowledge dimension.

This metacognitive learning instrument becomes a basic component in composing student's work sheet that can train their metacognitive ability in genetics subject.

The next is the composing of text book that compatible with an established thinking order in metacognitive learning instruments. The development of this text book is conducted by considering the organizing of material presentation that fit metacognitive knowledge order that are declarative, procedural, and conditional. It is started with presentation of declarative genetics concept, and presentation of procedural concept that contains problem and the way to solve it, and also conditional knowledge that contains techniques or strategies which have been chosen to solve a problem. Besides, the language use (Scientific Indonesian language), the substance of the text book is presented in order and step-by-step according to the order in metacognitive learning instrument. The information about theories, exercises, and tasks, also reflection activity are organized systematically. The organization of teaching material is conducted based on pedagogy principles that are reflected on systematic teaching material.

The result of text book development is very valid. The text book has different characteristic from the older one. Since the text book is composed from the easiest to the hardest hierarchy concept, only related concept is being presented. The unrelated concept was not presented because it may lead to the student's misconception. Furthermore, students are expected to solve the procedural problem which is discussed in the text book. The students also have to possess the concept that related to conditional knowledge so this text book plays its roles in explaining genetics.

The experiment on students shows that as much as 85% of students understand the material, the 85% of students stated that the correlation among concept is clear, there are 90% of students stated that genetic material can be understood, as much as 94% of students stated that they understand with the instruction, and 95% of students stated that the instruments and the text book use standardized Indonesian language.

The result of responses test showed that the students understood the questions order on student's work sheet and material order on student's text book. The LKP contains some questions that fall in three thinking ability categories. The first question is related to declarative knowledge that aims to recognize and understand that concept. The procedural questions are aimed to solve a problem to achieve genetics concept analysis and application ability. Students are expected to have some strategies to solve a procedural problem with a concept or a problem evaluation ability as an achievement including the text book that has been composed by regarding the easiest thinking order to the complex thinking order.

This research is expected to overcome student's difficulties in understanding genetic material, because many proves show that many students are poor in understanding genetics (Esiobu & Soyibo, 1995 in Susantini, 2010) as well as a research stated that students potentially have preparation in developing their metacognitive skill. However, in its actualization, students are failed to achieve metacognitive knowledge. The data shows that students' metacognitive knowledge is

poor. Therefore, learning process and guidance from their teacher are expected to attract students' actual zone (poor metacognitive knowledge) to the ideal zone (higher metacognitive knowledge) The result of is very significant to improve students' thinking ability as it based on declarative, procedural, and declarative knowledge which consist of high order thinking questions. As the result of the research by Zohar, Anat, 1999 shows that metacognitive knowledge of thinking skills is essential for the design of high-quality new learning activities because the design process requires thinking about thinking skills as explicit goals of the learning activity. Furthermore, metacognitive knowledge of thinking. Thus, the students are expected to learn with metacognitive knowledge design.

Students' achievement in organizing their cognitive structure can be seen from their way in utilizing their metacognitive language in problem solving, by finding concepts from reliable learning source. In addition, metacognitive knowledge is closely related to students' comprehension toward a concept. Metacognitive is student's awareness about how s/he learns and his/her ability to determine the difficulty of a problem, ability to observe the level of self-understanding, the ability to use various information to achieve learning purposes, and the ability to determine his/her own learning achievement or in the other words, if a student is able to manage his/her knowledge consciously, so s/he has achieved a meaningful learning process for his/her own self (Jonassen, 2000:14).

Based on the exposition above, it is obvious that metacognitive learning has its own excellences in the process of learning genetics. For that reason, this developing product can be used to improve students' higher thinking ability in Senior High School broadly.

CONCLUSIONS.

Based on the developing research, it can be concluded that this research produces metacognitivebased genetics learning instrument, text book, and student's work sheet at Senior High School. The learning instruments product that consist of learning instrument, text book, student's works sheet on metacognitive-based genetics subject material for 11th Grade Natural Science Students are very valid and have a very good quality.

Furthermore, this learning tool can be used in learning genetics so student's metacognitive ability can be trained. It produces learning instruments that includes lesson plan, text book, and metacognitive learning instrument in a form of student's work sheet. The learning instrument also used as student's learning achievement evaluation tool at the end of the lesson.

BIBLIOGRAPHIC REFERENCES.

- Cavallo. A.M.L. (1996). Meaningful learning, reasoning ability, and students's understanding and problem solving of topics in genetics. Journal of research in science teaching, 33, issue 6, pp. 625 -656
- Coutinho, S.A. (2007) The relationship between goals, metacognition, and academic success. Educate, 7, issue 1, pp. 39-47.
- Esiobu, G.O., & Soyibo, K. (1995). Effects of concept and vee mappings under three learning mode on student' cognitive achivement in ecology and genetics. Journal of research in science teaching, 32, issue 9, pp. 971-994.
- 4. Handel, et al. (2013). Assessing metacognitive knowledge: development and evaluation of a test instrument. Journal for educational research online, 5, issue 2, pp. 162-188.
- Jonassen, D. (2000). Toward a design theory of problem solving to appear in educational technologi: research and depelopement. [online] Tersedia di http://www.coe. missouri.edu/~jonassen/PSPaper%20 final.pdf (Diakses tanggal 24 Oktober 2015).
- Liu, C., & Zhang, T. (2016). Research oriented teaching reform of higher mathematics course in petroleum science. International Journal of Engineering, Science and Mathematics, 5(4), 31-39.

- Molina, Reynier Israel Ramírez, et al. "Liderazgo consiliente como competencia potenciadora del talento neuronal." Opción34.86 (2018): 826-854.
- 8. Nusantari, E. (2014). Miskonsepsi dan pentingnya hubungan antar konsep untuk membelajarkan materi genetik pada perkuliahan genetika. Prosiding. Surabaya: Unesa.
- Ozsoy, G & A. Ataman. (2009). The effect of metacognitive strategy training on mathematical problem solving archevement. Jurnal elektronik internasional dari pendidikan dasar. 1, issue 2, pp. 68 – 83.
- Rompayom, P., Chinda, T., Somson,W. & Precharn, D. (2010). The development of metacognitive inventary to measure students' metacognitve knowledge related to chemical bonding conseptions. Paper presented at international association for educational assessment (IAEA), April 1-7, 2010.
- 11. Sudijono, A. (1997). Pengantar evaluasi pendidikan. pt. raja grafindo persada: jakarta.
- Susantini, E. (2010). Efektivitas perangkat pembelajaran biologi berbasis strategi metakognitif ditinjau dari kemampuan siswa dan kategori sekolah. prosiding seminar nasional pendidikan biologi, FKIP UNS, pp. 380-393.
- 13. Thiagarajan, Sivasailam, dkk. (1974). Instructional development for trainingteachers of exceptional children. Washinton DC: national center for improvement educational system.
- Veenman, M. V. J., van Hout-Wolters, B. H. A. M., & Affl erbach, P. (2006). Metacognition and learning: conceptual and methodological considerations. Metacognition and Learning, 1, issue 2, pp. 3–14.
- Zohar, Anat. (1999). Teacherso metacognitive knowledge and the instruction of higher order thinking. teaching and teacher education, 15, issue 2, pp. 413 – 429.

DATA OF THE AUTHORS.

1. Elya Nusantari. Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia.

RECIBIDO: 4 de febrero del 2019.

APROBADO: 17 de febrero del 2019.